The PETsys SiPM Readout System is designed to read a large number of SiPM photo-sensor pixels in applications where a high data rate and excellent time resolution is required. It is based on the TOFPET2 ASIC [1]. This is a low power ASIC with 64 channels optimised for reading SiPMs for Time Of Flight PET applications. The ASIC is the interface between the analog signals from the photo-sensors and the digital readout. Every time one of the 64 channels in the ASIC exceeds the thresholds, a record is created giving the channel number, the time and the charge of the event. The rest of the readout chain only handles digital data.

The readout system has four main components: the Front-End Module, the Clock & Trigger module and DAQ board. Together these allow assembling a complete and scalable data acquisition system reading tens of thousands of independent SiPM pixels.

The PETsys Front-End module.

The PETsys Front-End Module is the front-end readout module for reading SiPM arrays, or micro-channel plate photo-detectors. It is the interface between the analog signals of the photo-sensor and the digital readout chain.

The Front-End Module (FEM128) (Fig. 1) has 128 channels. It is optimized for systems requiring a high channel data rate. The Front-End Module is made-up from three different boards: FEB/A, FEB/S and FEB/I. This allows for easy customisation for different SiPM types and scanner geometries.

The FEM128 has two FEB/A_V2 boards (Fig. 2). Each FEB/A board has one TOFPET2 ASIC with 64 channels. These boards are mounted perpendicular to the SiPM arrays, and this geometry makes it easier to control and stabilise the temperature of the SiPM array. The board also has a temperature sensor near to the ASIC.

The FEB/S board is a purely passive board adapting the SiPM array to the input connector on FEB/A_v2 board. This board will be different for different SiPM arrays models. The version of the FEB/S board shown in figure 1 has two pairs of connectors that directly take the Hamamatsu S13361-3050AS-08 8x8 MPPC array, or the KETEK 8x8 array PA3325-WB-0808. Each FEB/S measures 53.1 x 25.4 mm and is four-side buttable such as to allow forming a continuously sensitive area with almost no dead space. The FEB/S also has two temperature sensors, each located in the middle between the pair of connectors taking one SiPM array.

The FEB/I allows the FEB/D to communicate with both ASICs and the temperature sensor in the FEM128. It is equipped with a MAX 10 Altera FPGA and adapts the electrical communication protocol from LVCMOS in FEB/D to LVDS in the ASIC and reads the analog temperature sensors. Up to eight FEM128 can be connected to one FEB/D-1024 board using a SAMTEC HQDC-030-xx.00-TTL-SBL-1N flat cable (Fig. 3). It is also possible to plug the front-end modules directly into the FEB/D.

The power dissipation of the ASIC is 8.2 mW/channel for the recommended settings. The LVDS buffers and LDO voltage regulators of the FEM add 6mW/channel and bring the total power consumption of the FEM at 14.2 mW/channel.

The data output of the ASIC uses 4 LVDS data lines at up to 800 Mbps per data line. The events are encoded in 80 bits. The maximum event rate between the FEM128 and the FEB/D is 600 kcps per channel.
The PETsys Front-End type D module.

The Front End type D module (FEB/D-1024) is shown on figures 4 and 5. It provides power for the ASICs, adjustable bias voltages for the SiPMs, configuration, clock & synchronization signals, and data readout for up to 8 FEM128. It is composed of a FEB/D motherboard with a Kintex-7 FPGA_XC7K160T, a communication mezzanine and a bias voltage mezzanine.

Each FEB/D mother board measures 104.5x104.5 mm\(^2\). Eight front-end modules FEM128 can be connected to one FEB/D-1024 board, using either direct board-to-board connectors or using flexible coaxial flat Samtec cables (Fig. 3). The 12V power DC-DC converters and regulators on the FEB/D motherboard provide the low voltages (1.9 V and 3.6 V) for the FEM128.

The upper mezzanine on figure 4 is the communication mezzanine. It has a SFP+ port for data output to the DAQ and for receiving the configuration signals. A second SFP+ port allows the FEB/D to be daisy chained. The SFP+ ports operate at 6.6 Gbit/s allowing a maximum event output rate of 100 Mcps.

Synchronous readout of multiple FEB/D modules is enabled by a connection to the Clock\&trigger module through a ERNI SMC connector carrying LVDS signals at 400 Mbit/s. This interface also provides for a trigger system allowing to discard events that are not part of a coincidence, in the FEB/D before transmission.

A Gbit Ethernet communication mezzanine is also available for use with small systems. When using the Gbit Ethernet communication mezzanine the maximum data output rate to the computer is 15 M events/s.

The middle mezzanine on figure 4 supplies bias voltages to the SiPMs. The default mezzanine provides 16 positive bias voltages in the range 0-72 V, with a maximum current of 2.5mA per bias line. We can provide a version providing a maximum current of 8.75 mA per line. We also can provide a different bias voltage mezzanine with 64 bias voltage lines, same voltage range, 8 per FEM128. In this case the maximum current is 550 \(\mu\)A per bias line. It is possible to connect an external power supply and in this way provide up to 50 mA per bias line.

A customised mezzanine version, supplying a larger current, can be developed on request.

Main features of the FEB/D-1024 module:

- Reading up to 1’024 independent SiPM channels from 8 FEM128.
- Equipped with Kintex 7 FPGA.
- Comes with pre-installed firmware.
- Connects to up to eight Front-End Modules with 128 channels.
- Choice of two Data output DAQ mezzanines: SFP+ optical/copper, or Ethernet.
- Max output rate 6.6 Gbps, or 100 M events/s.
- Up to 32 FEB/D-1024 boards can be Daisy chained and connected to a single DAQ board input.
- Receives clock and synchronization signals from the Clock\&Trigger module.
- Clock frequency 160-200 MHz.
- External supply voltage: 12 Vdc, maximum 4 A.
- On board DC-DC converters supply power to the ASICs in the FEM boards.
- SiPM bias voltages produced in a mezzanine. The default mezzanine provides 16 lines, 5-100 V, positive, 3-9 mA per bias line.
- Can accept a veto signal from the Clock\&Trigger module.
The **Clock&trigger module.**

The Clock&trigger module (fig. 6) provides synchronization and time coincidence filtering for the FEB/D modules.

It generates the system reference clock and synchronization signal. For synchronization with external systems, it can accept an external clock and synchronization signal or it can provide a clock and synchronization signal to an external system. It can also accept a veto signal which causes all events across all FEM to be discarded when it’s active.

The Clock&trigger module allows to implement a system wide coincidence filter, collecting coarse time information from all the FEB/D modules and transmitting only coincidence events.

The Clock&trigger module uses the same mother board as the FEB/D board. It also has the same communication mezzanine and uses the same communication protocol, and connects to the DAQ board in the same way.

The Clock&trigger board supports up to 16 FEB/D and 4 trigger regions per FEB/D. A Clock&Trigger board for larger systems can be developed on request.

The **PETsys DAQ Board**

The PETsys DAQ board (Fig. 7), is equipped with a Kintex-7 FPGA. It collects data from the FEB/D boards, and transmits the data to the DAQ board in the DAQ computer using a x4 PCI express port.

The standard version of the DAQ board has 3 SFP+ optical/copper connectors connecting to 3 chains the FEB/D boards transmitting data at 6.6 Gbps (Fig. 8). A version with 12xCXP/SFP+ high-speed optical links connecting to up to 12 chains of FEB/D boards is available as an option.

The DAQ board receives and merges the data frames and transmits the assembled data frames to the computer. The maximum event rate to the DAQ computer is 250 Mcps. The DAQ board also sorts the events in the data frames by chronological order to facilitate processing by software.

Several FED/D boards can be daisy chained and send their output over the same optical link to the DAQ board. In this way the DAQ board, the Clock&Trigger module and the FEB/D modules together form a complete and scalable data acquisition system that can handle tens of thousands of SiPM channels.

Main features of the DAQ board:

- Single PCI express board providing data acquisition with TOF ASICs.
- Equipped with Kintex7 FPGA.
- Compatible with FEM128, FEM256, FEB/D1024 FEB/D4096, and Clock&Trigger modules.
- Equipped with 3 SFP+ optical/copper connectors receiving three optical links for sending and receiving data to/from three FEB/D module chains.
- Distributes configuration files for the ASICs.
- Configures the Clock&Trigger module.
- Maximum total input event rate: 100 M events/s for each of the input links.
- Maximum data output rate to the DAQ computer: 200 M events/s.
- Reads temperature sensors in the Front-End Modules.
- Reads of TOF ASIC dark counters.
- Accepts an external veto signal and distributes it to the FEB/D boards via the Clock&Trigger module.
Firmware and software

The PETsys readout system is provided with firmware and software. The Data Acquisition System runs under Linux and comes with a graphical user interface, see figure 9.

The software is provided as source code, allowing the user to customize it. The firmware implements a software centric approach, allowing direct and online access to TOFPET 2 ASIC configuration, bias voltage configuration, temperature sensor readout and also to raw TOFPET 2 ASIC data.

In order to reduce the data rate and discard events without interest, the firmware in the FEB/D modules supports coincidence event selection. The coincidence selection is based on coarse timestamps (1 clock period, 5 ns). The complete readout is divided in a configurable number of trigger regions, and events without a coincidence partner in a different trigger region are discarded in the FEB/D boards before transmission. The smallest trigger region consists of two FEM128 connected to the same FEB/D1024. Besides the optional rejection of events that are not part of a coincidence, no other manipulation is performed on the raw event data from the TOFPET 2 ASIC.

The coincidence filter searches for events above a configurable energy threshold and then for coincidences between such events, belonging to allowed trigger region pairs, within a window of 0, 1, 2 or 3 clock periods and. When coincidences are found, the filter will forward any events within a -3... 16 clock cycle window of the primary trigger events.

The duration of the windows and the matching of the trigger regions is configurable.

The coincidence filter allows collecting of data for two types of random coincidence correction methods:

- **Wide coincidence window**: The coincidence window can be set to a value larger than 2 clock cycles, allowing the collection of more random events; this is broadly equivalent to the delayed window method.
- **Periodic single trigger**: In addition to coincidences, the trigger can select all events in a window of 10, 20, 50 or 100 clock periods every 1025 clock periods. The 1025 clock periodicity ensures that the data collected is de-correlated from the systems’ 1024 clock frame period.

Synchronisation with other systems.

It is often necessary to synchronise the clock on the PETsys readout with other clocks in the system. If the ratio of the clocks frequencies of the two sub systems is an integer, both can share a common clock and synchronisation signal. The FEB/D board or the Clock&trigger module can accept an external signal and generate a event record with a time least count of 1.24 ns. Alternatively, one can use any ASIC input channel to generate time event records with a timing least count of 30 ps. Finally the Clock&trigger module can send out LVDS timing signals synchronised to the ASIC clock at a configurable frequency.
Examples of readout solutions.

The readout was developed with the application in Time of flight PET in mind, but can also be used in many other applications where one needs to read a large number of SiPM pixels. The Front-End Modules, the Front End type D module, the DAQ board and the Clock&Trigger module together allow building data acquisition systems adapted to the needs of most applications. Below we present 4 typical applications in PET.

Readout solution for small systems.

If the application requires 1’024 channels or less, and if the total data rate to the computer is below 15 M events/s after coincidence event selection, the readout will need one FEB/D-1024 equipped with an Ethernet communication mezzanine (Fig. 10), and maximum eight FEM-128.

For the purpose of coincidence event selection, the Front-End Modules connected to one FEB/D can be grouped in maximum four trigger regions. A trigger region consists of either one or two FEM128.

Readout solution for several 1’000 channels.

If the application requires reading more than 1’024 channels, or requires a larger event rate to the computer, the system needs a Clock&Trigger module and a DAQ board. Figure 11 shows system interconnect topology for a system with 6’144 channels. It can be extended to more channels by daisy chaining more FEB/D-1024 boards. One chain of FEB/D boards can have up to 32 boards. This same system interconnect topology is also illustrated in figure 8 in the case of 2 FEB/D boards.

Each ASIC2 has 4 LVDS data output links, and the maximum data output rate from the ASIC to the FEB/D-1024 is 600 kcps per ASIC channel.

In most cases the data rate from the DAQ board to the computer (250 M events/s) will be limiting the event rate per channel, and this event rate will depend on the efficiency of the coincidence filter. The efficiency of the coincidence filter depends on the geometry of the PET scanner considered; it typically reduces the data rate to the computer by a factor 10. For example, in a PET system with 6’144 channels, the maximum single event data rate the system can handle is of the order of 400 kcp per channels.

![Figure 10. FEB/D for small systems.](image)

This figure shows FEB/D1024 module with Ethernet mezzanine. The FEB/D1024 collects data from up to eight FEM128, and sends the data to a computer using an Ethernet link at 1 Gbit/s.

![Figure 11. Readout for a system with 6’144 channels.](image)

The figure shows the system interconnect topology for a system with 6 FEB/D1024 boards. Each FEB/D1024 is connected to eight FEM128. The communication between the master FEB/D module and the DAQ computer uses optical fibers. The communication between the FEB/D modules in the FEB/D daisy chain uses SFP+ copper links.
Readout solution for several 10'000 channels.

A new version of the readout solution with a front end module reading 256 channels (FEM256) and a FEB/D4096 reading 4096 channels is available. It is optimised for a lower per channel cost in applications such as Whole Body PET were data rates are lower. In the FEM256 module only 1 data output line per ASIC is used and the maximum event rate from the ASIC to the FEB/D is 150 kcps per channel.

This solution uses the same Clock&Trigger module and the same DAQ board as the readout with FEM128 and FEB/D1024 modules.

Figure 12 shows the system interconnect topology of a system reading 32'768 channels. The system has 8 FEB/D4096, 128 FEM256, one DAQ board and one Clock&trigger module. The useful event rate per channel will be limited by the data transfer rate to the computer. In this example the maximum event rate per channel will be 76 kcps if the coincidence trigger reduces the data rate by a factor 10.

Readout solution for several 100’000 channels.

The readout for a total body requires several 100’000 channels. In this case the readout system needs several DAQ boards to allow for a sufficient data rate to the computer. Figure 13 shows the interconnect topology for a system reading 491’520 channels. This systems has 120 FEB/D4096 modules, one Clock&trigger module and 4 DAQ boards. The system uses the same FEM126, FEB/D4096 and DAQ boards as the system with a few 10’000 channels discussed above. Only the Clock&tigger module will be different in this application.

For more information visit our web site www.petsyselectronics.com or contact sales@petsyselectronics.com