

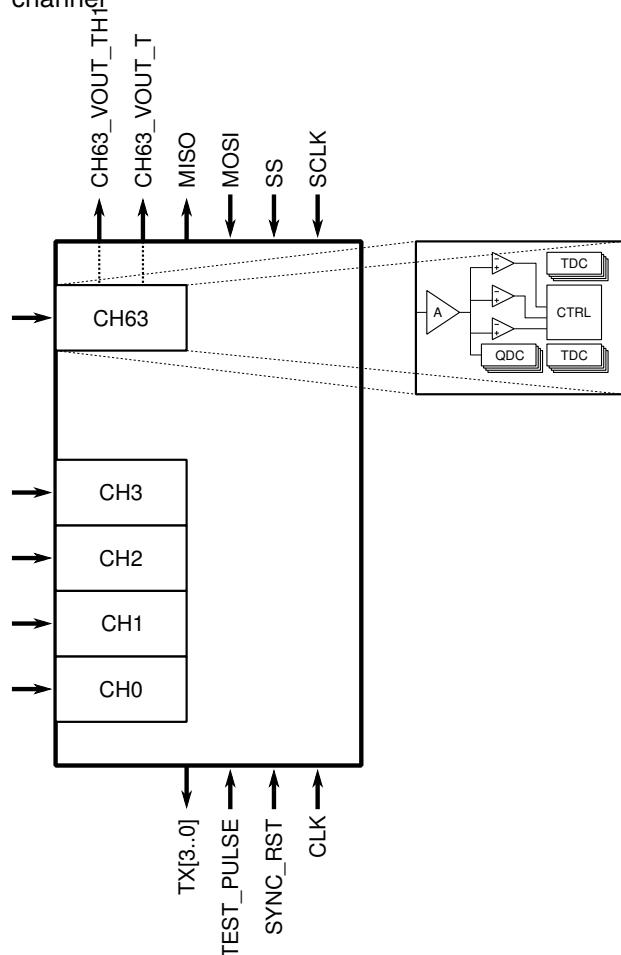


## General description

The TOFPET2 ASIC is a low-power, low-noise, readout and digitization ASIC implemented in 110nm CMOS technology for fast radiation detectors using Silicon Photomultipliers (SiPM) in Time-of-Flight (ToF) applications. The ASIC integrates signal amplification circuitry, discriminators, charge integration ADCs and high-performance TDCs for each of 64 independent channels. The pre-amplifier is a low impedance current conveyor. Two transimpedance post-amplifiers are optimized for time resolution and charge integration. Three voltage mode discriminators with configurable thresholds are used for timing measurements, to reject low amplitude pulses, to start the charge integration window, and to trigger the event data readout. Each channel has quad-buffered analogue interpolation TDCs with time binning of 30 ps and charge integration ADCs with linear response up to 1500 pC input charge. The ASIC requires 1.2 V and 2.5 V power supplies, two external voltage references and low-jitter LVDS clock.

## Features

- Signal amplification and discrimination for each of 64 independent channels.
- Dual branch quad-buffered analogue interpolation TDCs for each channel.
- Quad-buffered charge integration for each channel.
- Dynamic range: 1500 pC.
- TDC time binning: 30 ps
- Gain adjustment per channel: 1, 1/2, 1/4, 1/8.
- SiPM family supported: positive input signal polarity
- Max channel hit rate: 500 kHz.
- Configurable timing, trigger and ToT thresholds.
- Fully digital output.
- Max output data rate: 3.2 Gb/s.


## Applications

- Positron emission tomography.
- Cargo scanning.
- Nuclear and high energy physics experiments
- Radiation detection
- LIDAR

US patent no 7,917,192. Additional patents pending examination.

## Functional block diagram

Figure 1: Functional block diagram of ASIC and channel



## Revision history

| Revision number | Revision date | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18              | 2024/03/20    | Corrected definition of bits 177 and 176 in table 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 17              | 2023/09/05    | Corrected maximum event output rate in table 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16              | 2022/09/20    | Added errata to section 5.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 15              | 2022/01/26    | Correct miscellaneous typos in table 2, table 12 and missing reference to table 26.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14              | 2022/01/17    | Clarification of global reset timing and sequence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13              | 2021/07/12    | Clarification and example code for CRC-8 calculation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12              | 2021/04/13    | Corrected settings in QDC mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11              | 2020/07/09    | Added new section on trigger modes.<br>Added new plots describing post-amplifier threshold and baseline behaviour.<br>Added new information on VREF.<br>Added settings for negative polarity input (TOFPET 2D only).<br>Added settings for integration bias and its effect on integration window length.                                                                                                                                                                                                                                                     |
| 10              | 2019/09/24    | Added missing option to table 19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9               | 2019/05/24    | Corrected QDC relative gains (section 5.7).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8               | 2019/04/29    | Add description of data link heartbeat (section 7.4).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7               | 2019/01/21    | Add note regarding delay line setting and trigger modes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6               | 2018/11/23    | Add plot of threshold DAC LSB settings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5               | 2018/10/20    | Discontinue support for negative input mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4               | 2018/08/30    | Updated for TOFPET 2C. Users of TOFPET 2B should read the note on page 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3               | 2018/08/09    | Corrected figure 40.<br>Added subsection "11.3 Recommended footprint".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2               | 2018/07/06    | Characterized TDC and QDC shift as function of temperature.<br>Add description of expected signals on analog debug outputs.<br>Add description of integration time window.<br>Correction to figure 36.<br>Correction to figures 18 and 19.<br>Addition of figure 16.<br>Add detail of resetting after configuration requirements in section 3.<br>Add detail of resetting after configuration requirements in section 3.<br>Correction of "integ_source_sw" bits in table 13.<br>Correction of description of $G_{Q1}$ and $G_{Q2}$ settings in section 5.7. |
| 1               | 2018/01/09    | Initial release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Table 1: Revision history

## Contents

|                                                                                  |           |                                                |           |
|----------------------------------------------------------------------------------|-----------|------------------------------------------------|-----------|
| <b>1 Specifications</b>                                                          | <b>4</b>  | <b>10 Calibration</b>                          | <b>33</b> |
| <b>2 Power and biasing</b>                                                       | <b>7</b>  | 10.1 TIA baseline and discriminators . . . . . | 33        |
| <b>3 Clocking and resetting</b>                                                  | <b>8</b>  | 10.1.1 Baseline adjustment . . . . .           | 33        |
| <b>4 Configuration interface</b>                                                 | <b>10</b> | 10.1.2 Threshold calibration . . . . .         | 33        |
| 4.1 Write . . . . .                                                              | 10        | 10.1.3 Dark counts . . . . .                   | 33        |
| 4.1.1 Global configuration write command                                         | 10        | 10.2 TDC calibration . . . . .                 | 34        |
| 4.1.2 Channel configuration write command                                        | 10        | 10.3 QDC calibration . . . . .                 | 34        |
| 4.2 Read . . . . .                                                               | 10        |                                                |           |
| 4.2.1 Global configuration read command                                          | 10        |                                                |           |
| 4.2.2 Channel configuration read command                                         | 11        |                                                |           |
| 4.3 Configuration register fields . . . . .                                      | 11        | <b>11 Package and pin description</b>          | <b>36</b> |
| 4.3.1 Global configuration register . . . . .                                    | 12        | 11.1 Pin description . . . . .                 | 36        |
| 4.3.2 Channel configuration register . . . . .                                   | 13        | 11.2 Package outline . . . . .                 | 40        |
| <b>5 Channel</b>                                                                 | <b>14</b> | 11.3 Recommended footprint . . . . .           | 41        |
| 5.1 Input stage . . . . .                                                        | 14        |                                                |           |
| 5.1.1 Input stage impedance tuning . . . . .                                     | 14        |                                                |           |
| 5.1.2 Performance versus power consumption . . . . .                             | 15        |                                                |           |
| 5.2 Transimpedance amplifier (branch T) . . . . .                                | 15        |                                                |           |
| 5.3 Transimpedance amplifier (branch E) . . . . .                                | 16        |                                                |           |
| 5.3.1 Performance versus power consumption . . . . .                             | 16        |                                                |           |
| 5.4 Event trigger logic . . . . .                                                | 17        |                                                |           |
| 5.5 Measurement mode . . . . .                                                   | 18        |                                                |           |
| 5.6 TDC . . . . .                                                                | 19        |                                                |           |
| 5.7 QDC . . . . .                                                                | 19        |                                                |           |
| 5.8 Multi-buffering . . . . .                                                    | 21        |                                                |           |
| 5.9 Event counter . . . . .                                                      | 21        |                                                |           |
| <b>6 Debug outputs</b>                                                           | <b>23</b> |                                                |           |
| 6.1 Channel 63 analog debug outputs . . . . .                                    | 23        |                                                |           |
| 6.2 Digital analog debug outputs . . . . .                                       | 23        |                                                |           |
| <b>7 Data transmission</b>                                                       | <b>24</b> |                                                |           |
| 7.1 Link receiver training patterns . . . . .                                    | 24        |                                                |           |
| 7.2 Event data words . . . . .                                                   | 24        |                                                |           |
| 7.3 Counter data words . . . . .                                                 | 26        |                                                |           |
| 7.4 Heartbeat words . . . . .                                                    | 26        |                                                |           |
| <b>8 Typical performance characteristics</b>                                     | <b>27</b> |                                                |           |
| <b>9 Trigger modes</b>                                                           | <b>30</b> |                                                |           |
| 9.1 Single threshold trigger: T1 . . . . .                                       | 30        |                                                |           |
| 9.2 Single threshold trigger: E . . . . .                                        | 30        |                                                |           |
| 9.3 Dual threshold trigger: T1, T2 . . . . .                                     | 30        |                                                |           |
| 9.4 Dual threshold trigger: T1, E . . . . .                                      | 31        |                                                |           |
| 9.5 Dual threshold trigger: T1, T2 with fast dark count rejection . . . . .      | 31        |                                                |           |
| 9.6 Triple threshold trigger: T1, T2, E with fast dark count rejection . . . . . | 31        |                                                |           |

# 1 Specifications

## Absolute maximum ratings

$T_A = 24^\circ\text{C}$  unless otherwise noted.

- Functional operation of the device in Absolute Maximum Rating conditions or any conditions outside those specified in Table 2 is not implied.
- Permanent exposure to Absolute Maximum Rating conditions can reduce device reliability.
- Exposure to conditions outside Absolute Maximum Rating conditions may cause permanent damage to device.

Table 2: Specifications

| Description                                    | Symbol            | Min  | Typ               | Max              | Units    |
|------------------------------------------------|-------------------|------|-------------------|------------------|----------|
| <b>Power supply</b>                            |                   |      |                   |                  |          |
| 1.2 V supply                                   | $V_{DD12}$        | 1.1  | 1.2               | 1.3              | V        |
| Total input current on $V_{DD12}$ rails        | $I_{VDD12}$       |      | 370               | 800              | mA       |
| 2.5 V supply                                   | $V_{DD25}$        | 2.3  | 2.5               | 2.7              | V        |
| Total input current on $V_{DD25}$ rails        | $I_{VDD25}$       |      | 30                |                  | mA       |
| <b>External references</b>                     |                   |      |                   |                  |          |
| Global voltage reference                       | $V_G$             | 490  | 500               | 510              | mV       |
| Total input current on $V_G$                   | $I_{VG}$          |      | 10                |                  | $\mu$ A  |
| TDC voltage reference                          | $V_{REF}$         | 790  | 800               | 810              | mV       |
| Total input current on $V_{REF}$               | $I_{VREF}$        | -0.2 |                   | 10               | mA       |
| <b>Analog inputs</b>                           |                   |      |                   |                  |          |
| Input impedance                                | $R_{IN}$          |      | 20                |                  | $\Omega$ |
| Input DC voltage (positive input)              | $V_{IN@P}$        |      | 800               |                  | mV       |
| Input DC voltage (negative input) <sup>a</sup> | $V_{IN@N}$        |      | 400               |                  | mV       |
| Input current                                  | $I_{IN}$          |      |                   | 20               | mA       |
| Input charge <sup>g</sup>                      | $Q_{IN}$          |      |                   | 2300             | pC       |
| <b>Transimpedance amplifier</b>                |                   |      |                   |                  |          |
| Transimpedance amplifier gain (T branch)       | $G_T$             |      | 3000 <sup>b</sup> |                  | $\Omega$ |
| Transimpedance amplifier gain (E branch)       | $G_T$             |      | 300 <sup>b</sup>  |                  | $\Omega$ |
| Noise RMS (T branch)                           | $V_{noise\_T}$    |      | 1.2 <sup>c</sup>  |                  | mV       |
| Saturation voltage of the TIA output stage     | $V_{sat}$         |      | 400               |                  | mV       |
| <b>Time to Digital Converter (TDC)</b>         |                   |      |                   |                  |          |
| TDC binning                                    | $TDC_{LSB}$       |      | 31 <sup>d</sup>   |                  | ps       |
| TDC resolution (RMS)                           | $TDC_{RMS}$       |      | 20 <sup>d</sup>   |                  | ps       |
| TDC DNL                                        | $TDC_{DNL}$       |      |                   | 0.1              | LSB      |
| TDC INL                                        | $TDC_{INL}$       |      |                   | 1.0              | LSB      |
| <b>Charge to Digital Converter (QDC)</b>       |                   |      |                   |                  |          |
| Gain                                           | $G_Q$             | 1.0  | 1.0               | 3.65             |          |
| QDC binning                                    | $QDC_{LSB}$       |      | 3.6 <sup>e</sup>  |                  | pC       |
| Noise                                          | $QDC_{RMS}$       |      | 0.7               |                  | LSB      |
| QDC DNL                                        | $QDC_{DNL}$       |      |                   | 0.6 <sup>f</sup> | LSB      |
| QDC INL                                        | $QDC_{INL}$       |      |                   | 1.5 <sup>f</sup> | LSB      |
| QDC range                                      |                   |      | 400               |                  | LSB      |
| Integrator bias current                        | $I_{integ\_bias}$ |      | 1.0               |                  | LSB/ns   |
| <b>Timing</b>                                  |                   |      |                   |                  |          |
| Main clock frequency                           | $f_{CLK}$         | 160  |                   | 400              | MHz      |
| Event digitization clock frequency             | $f_{TDC\_CLK}$    | 160  |                   | 200              | MHz      |
| SYNC_RST to CLK setup time <sup>h</sup>        | $t_{SU1}$         | 1.0  |                   |                  | ns       |
| SYNC_RST to CLK hold time <sup>h</sup>         | $t_{H1}$          | 0.25 |                   |                  | ns       |
| Configuration clock frequency                  | $f_{SCLK}$        |      |                   | 10               | MHz      |
| Setup time to SCLK                             | $t_{SU2}$         | 20   |                   |                  | ns       |
| Hold time to SCLK                              | $t_{H2}$          | 20   |                   |                  | ns       |
| Output delay from SCLK                         | $t_{CO2}$         | 1    |                   | 25               | ns       |
| <b>Data transmission</b>                       |                   |      |                   |                  |          |
| Output link rate                               |                   |      | 160               | 800              | Mbit/s   |
| Max event rate (per ASIC)                      |                   |      |                   | 32               | Mevent/s |

<sup>a</sup> TOFPET 2D only.<sup>b</sup> Adjustable down to  $\frac{1}{2}$ ,  $\frac{1}{4}$ ,  $\frac{1}{8}$  of nominal.<sup>c</sup> Measured with Hamamatsu S13361 SiPM at input.<sup>d</sup> 200 MHz TDC\_CLK.<sup>e</sup> For  $G_{Q1} \cdot G_{Q2} = 1.0$ . Adjusting the gain trades dynamic range for resolution.<sup>f</sup> Over a range of 160 LSB.<sup>g</sup> Dependent on pulse shape. Indicative value for pulses generated by KETEK-PM3325-WB SiPM with 40 ns decay time coupled to LYSO scintillating crystal.<sup>h</sup> Setup and hold time from SYNC\_RST to SCLK are  $t_{SU2}$  and  $t_{H2}$ .

Table 3: Absolute maximum ratings

| Description           | Rating       |
|-----------------------|--------------|
| ESD                   | 2kV          |
| VDD12 to GND          | -0.2 to 1.4V |
| Analog input to GND   | -0.2 to 1.4V |
| VDD25 to GND          | -0.2 to 2.8V |
| Digital input to GND  | -0.2 to 2.8V |
| Digital output to GND | -0.2 to 2.8V |
| Junction Temperature  | 125 °C       |

## 2 Power and biasing

Figure 2: Power and biasing

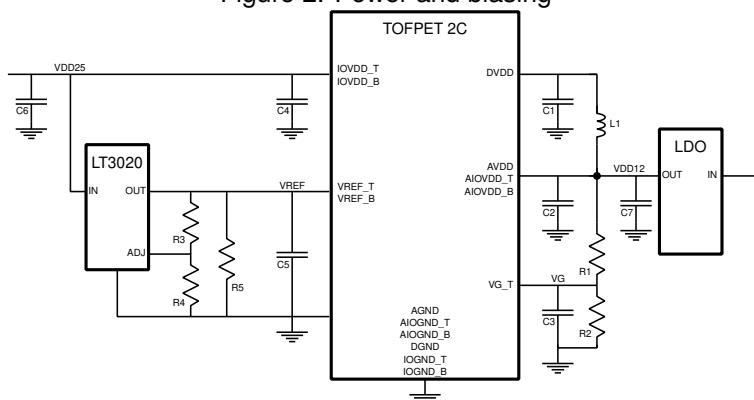



Figure 2 shows the recommended scheme for supplying power and bias to TOFPET 2C.

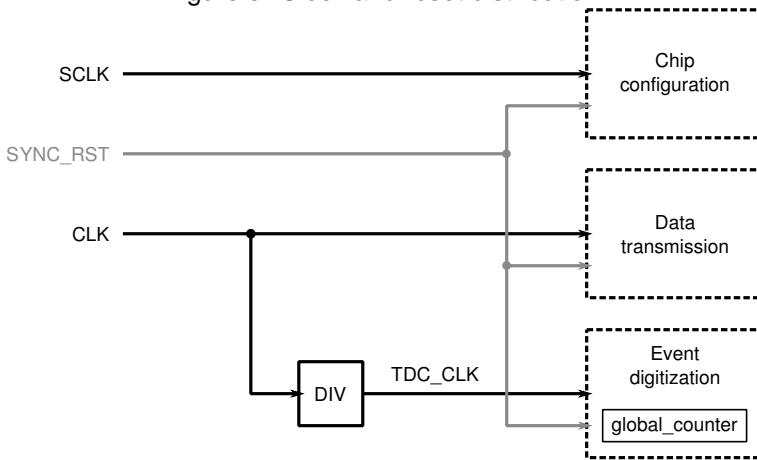

- $VDD12$  should be provided by a linear regulator close to the device. Any noise in the  $VDD12$  supply rail will contribute to degrading device performance.
- Variations in  $VDD12$ ,  $VG$  and  $VREF$  even within the operation range will change the device's operation characteristics and require re-calibration.
- A LT3020 LDO and respective  $R3$  and  $R4$  adjustment resistors are shown as means to generate  $VREF$ . The values used for  $R3$  and  $R4$  are necessarily low because the  $VREF$  pins can also source current. Other similar LDO models can be used to generate  $VREF$  but the same care must be taken to use low values for the adjustment resistors.
- A resistive divider ( $R1$  and  $R2$ ) is shown as means to generate  $VG$ . A 500 mV voltage reference is also suitable.
- Load resistor  $R5$  is used to ensure the minimum current drawn from the LDO is within its specifications. In particular the designer should beware that the TOFPET 2C's  $VREF$  pin can draw or source current.

Table 4: Reference values

| Symbol | Values                 | Description                                                |
|--------|------------------------|------------------------------------------------------------|
| R1     | 1100 $\Omega$          |                                                            |
| R2     | 787 $\Omega$           |                                                            |
| R3     | 330 $\Omega$           |                                                            |
| R4     | 110 $\Omega$           |                                                            |
| R5     | 660 $\Omega$           |                                                            |
| L1     | 100 $\Omega$ @ 100 MHz | Ferrite bead.                                              |
| C1     | 100 nF, 10 nF          | Decoupling capacitance. Place multiple close to TOFPET 2C. |
| C2     | 100 nF                 | Decoupling capacitance. Place multiple close to TOFPET 2C. |
| C3     | 1 $\mu$ F, 100 nF      |                                                            |
| C4     | 100 nF                 |                                                            |
| C5     | 1 $\mu$ F, 100 nF      | Decoupling capacitance. Place multiple close to TOFPET 2C. |
| C6     | 100 nF                 | Bulk capacitance.                                          |
| C7     | 100 nF                 | Bulk capacitance.                                          |

### 3 Clocking and resetting

Figure 3: Clock and reset distribution.



TOFPET 2C has two independent (asynchronous) clock domains.

- SCLK which drives the ASIC configuration logic. This clock can be gated off during the normal ASIC operation.
- Core clock (CLK) which drives all the core logic (event digitization and transmission).
  - Data transmission links are driven directly by CLK.
  - Event digitization is driven by CLK divided by a factor DIV, set by global setting `tdc_clk_div`. This includes the *global\_counter* coarse counter which is the basis for the coarse event time tags.

Table 5: DIV setting

| <code>tdc_clk_div</code> | DIV value |
|--------------------------|-----------|
| 0b0                      | 1         |
| 0b1                      | 2         |

#### Reset

The two clock domains share a single reset signal SYNC\_RST.

- If SYNC\_RST is active during a CLK rising edge, the logic driven by CLK will be reset.
- If SYNC\_RST is active during a SCLK rising edge, the logic driven by SCLK, including the ASIC configuration registers, will be reset.

In some circumstances, the general, the core logic MUST be reset after a channel configuration write or read.

- The core logic MUST be reset after changing the contents of global channel register for which CRR is “YES” (see table 12).
- The core logic MUST be reset after ANY channel configuration write or read.

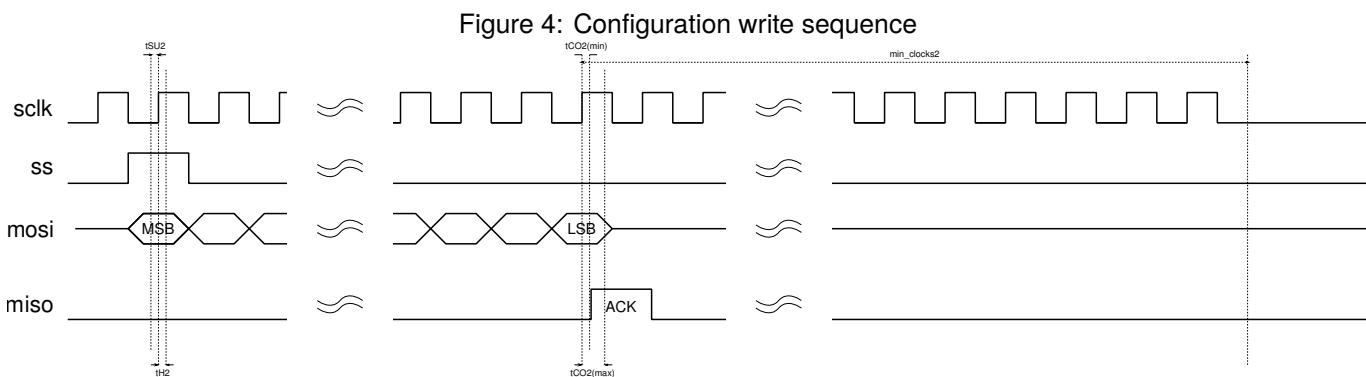
A typical sequence for “TOFPET 2C” operation is

1. Power on.
2. Enable CLK.
3. Reset all logic:
  - Enable SYNC\_RST.

- Enable SCLK.
- Disable SCLK.
- Disable SYNC\_RST.

4. For each configuration register:
  - Enable SCLK.
  - Write configuration register.
  - Disable SCLK.
5. Pulse SYNC\_RST to reset core logic.

## 4 Configuration interface


The ASIC configuration consists of a 184-bit global configuration vector and a 125-bit per channel configuration vector, which can be written or read through the configuration interface. The configuration interface is a 4-signal interface similar to SPI but implemented using LVDS signalling. Also of note, MISO does not have tri-state capability.

The configuration commands and replies are protected by an 8-bit CRC, whose polynomial is  $x^8 + x^2 + x + 1$  and initial value is 0x8A. See section A for example code.

Figure 4 and table 2 lists the timing requirements for the configuration interface. The configuration clock SCLK can be disabled when not needed, but it should be kept active for a minimum of 200 clock (*min\_clocks2*) after an acknowledgement in order for the internal configuration state machine to settle.

### 4.1 Write

To write a configuration vector, the SPI master asserts SS for 1 clock cycle and transmits the configuration command on MOSI. If the command is successfully received, the ASIC will acknowledge it by asserting the MISO signal for one clock period.



#### 4.1.1 Global configuration write command

The global configuration write command is a 196-bit vector, transmitted MSB first, as per table 6.

#### 4.1.2 Channel configuration write command

The channel configuration write command is a 144-bit vector, transmitted MSB first, as per table 7.

Table 6: Global configuration write command

| Bits    | Content                                   |
|---------|-------------------------------------------|
| 195:192 | 0b1000                                    |
| 191:8   | Configuration register content (184-bit). |
| 7:0     | 8-bit CRC of the preceding bits.          |

Table 7: Channel configuration write command

| Bits    | Content                                   |
|---------|-------------------------------------------|
| 143:139 | 0b00000                                   |
| 138:133 | Channel number.                           |
| 132:8   | Configuration register content (125-bit). |
| 7:0     | 8-bit CRC of the preceding bits.          |

### 4.2 Read

To read a configuration vector, the SPI master asserts SS for 1 clock cycle and transmits the configuration command on MOSI. If the command is successfully received, the ASIC will acknowledge it by asserting the MISO signal for one clock period and then will transmit the reply on the MISO signal.

#### 4.2.1 Global configuration read command

The global configuration read command is a 12-bit vector, transmitted MSB first, as per table 8. If successfully acknowledged, the ASIC replies with a 192-bit vector as per table 9.

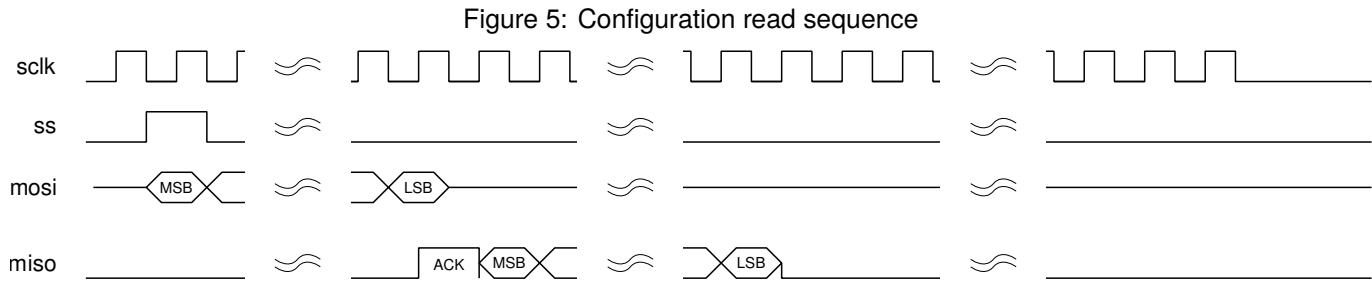



Table 8: Global configuration read command

| Bits | Content                          |
|------|----------------------------------|
| 11:8 | 0b1001                           |
| 7:0  | 8-bit CRC of the preceding bits. |

Table 9: Global configuration read reply

| Bits  | Content                                   |
|-------|-------------------------------------------|
| 191:8 | Configuration register content (184-bit). |
| 7:0   | 8-bit CRC of the preceding bits.          |

#### 4.2.2 Channel configuration read command

The channel configuration read command is a 19-bit vector, transmitted MSB first, as per table 10. If successfully acknowledged, the ASIC replies with a 133-bit vector as per table 11.

Table 10: Channel configuration read command

| Bits | Content                          |
|------|----------------------------------|
| 18:4 | 0b00010                          |
| 13:8 | Channel number.                  |
| 7:0  | 8-bit CRC of the preceding bits. |

Table 11: Channel configuration read reply

| Bits  | Content                                   |
|-------|-------------------------------------------|
| 132:8 | Configuration register content (125-bit). |
| 7:0   | 8-bit CRC of the preceding bits.          |

### 4.3 Configuration register fields

The following tables contain the description of the configuration register fields as well as default values to be set in TOFPET 2C configuration registers.

- The values here are *not* the values present in the configuration registers after a reset (see 3).
- For fields without description, PETsys does not at this time support modifying their values.
- Note some fields use big endian bitness, while other fields use little endian bitness.

#### Note for TOFPET 2B users

TOFPET 2C is backward compatible with TOFPET 2B regarding package and performance, but there are some differences between the contents of the configuration registers for TOFPET 2B and TOFPET 2C.

- Global config *fe\_ib2* has 6 instead of 5 bit and a different default value.
- Global config *main\_global\_dac* has a different default value.
- Global config *counter\_period* has a different format and different default value. See section 5.9.
- Channel configs *min\_intg\_time* and *max\_intg\_time* have a different format and different default value. See section 5.7.
- Channel config *ch63obuf\_msb* has been replaced with global configuration *adebug\_buffer*. See section 6.1.

## 4.3.1 Global configuration register

| Description                            | Bits           | Default value | Symbol             | Section | DD1R |
|----------------------------------------|----------------|---------------|--------------------|---------|------|
| Set number of active links             | 1...0          | 0b10          | tx_nlinks          | 7       | YES  |
| Set link rate mode (SDR or DDR)        | 2...2          | 0b1           | tx_ddr             | 7       | YES  |
| Set link mode                          | 4...3          | 0b10          | tx_mode            | 7.1     | NO   |
| Enable digital debug output mode       | 5...5          | 0b0           | debug_mode         | 6.2     | YES  |
| Enable Trigger veto.                   | 11...6         | 0b000000      | veto_mode          | 5.4     | YES  |
| Set TDC clock divider                  | 12...12        | 0b1           | tdc_clk_div        | 3       | YES  |
|                                        | 15...13        | 0b110         | r_clk_en           |         | YES  |
|                                        | 17...16        | 0b00          | n/u                |         |      |
|                                        | 19...18        | 0b00          | stop_ramp_en       |         | YES  |
| Set event counter enable               | 20...20        | 0b0           | counter_en         | 5.9     | YES  |
| Set event counter period               | 23...21        | 0b110         | counter_period     | 5.9     | YES  |
|                                        | 24...24        | 0b1           | tac_refresh_en     |         | YES  |
|                                        | 28...25        | 0b1001        | tac_refresh_period |         | YES  |
|                                        | 30...29        | 0b00          | data_clk_div       |         | YES  |
|                                        | 31...31        | 0b0           | n/u                |         |      |
|                                        | 32...32        | 0b0           | fetp_enable        |         | NO   |
| Set input polarity                     | 33...33        | 0b1           | input_polarity     | 5.1     | NO   |
|                                        | 34...39        | 0b101111      | attenuator_ls      |         | NO   |
|                                        | 40...45        | 0b111001      | v_ref_diff_bias_ig |         | NO   |
|                                        | 46...50        | 0b11111       | v_cal_ref_ig       |         | NO   |
|                                        | 51...55        | 0b10111       | fe_postamp_t       |         | NO   |
|                                        | 56...60        | 0b10100       | fe_postamp_e       |         | NO   |
|                                        | 61...65        | 0b00001       | v_cal_tp_top       |         | NO   |
|                                        | 66...70        | 0b00000       | v_cal_diff_bias_ig |         | NO   |
|                                        | 71...76        | 0b100011      | v_att_diff_bias_ig |         | NO   |
|                                        | 77...82        | 0b111011      | v_integ_ref_ig     |         | NO   |
|                                        | 83...87        | 0b10111       | imirror_bias_top   |         | NO   |
|                                        | 88...92        | 0b00100       | tdc_comp_bias      |         | NO   |
|                                        | 93...97        | 0b10011       | tdc_i_lsb          |         | NO   |
| Set LSB of T1 threshold DAC            | 98...103       | 0b111010      | disc_lsb_t1        | 5.2     | NO   |
|                                        | 176, 104...108 | 0b110000      | fe_ib2             |         | NO   |
|                                        | 109...114      | 0b110110      | vdifffoldcas       |         | NO   |
| Set LSB of E threshold DAC             | 115...118      | 0b1110        | disc_vcás          |         | NO   |
|                                        | 119...124      | 0b101000      | disc_lsb_e         | 5.3     | NO   |
|                                        | 125...129      | 0b10010       | tdc_i_ref          |         | NO   |
|                                        | 130...133      | 0b0010        | tdc_comp_vcás      |         | NO   |
|                                        | 134            | 0b1           | fe_ib2_x2          |         | NO   |
|                                        | 135...139      | 0b10111       | main_global_dac    |         | NO   |
|                                        | 140...145      | 0b111011      | fe_ib1             |         | NO   |
|                                        | 146...151      | 0b010011      | disc_ib            |         | NO   |
| Set LSB of T2 threshold DAC            | 152...157      | 0b110000      | disc_lsb_t2        | 5.2     | NO   |
|                                        | 158...162      | 0b01101       | tdc_tac_vcás_p     |         | NO   |
|                                        | 163...166      | 0b0111        | tdc_tac_vcás_n     |         |      |
| Enable channel 63 analog debug outputs | 167...168      | 0b11          | adebug_out_mode    | 6.1     | NO   |
|                                        | 169...174      | 0b010011      | tdc_global_dac     |         | NO   |
| Analog debug outputs buffer strength   | 175            | 0b1           | adebug_buffer      | 6.1     | NO   |
|                                        | 177            | 0b0           | n/u                |         |      |
|                                        | 178...183      | 0b100000      | disc_sf_bias       |         | NO   |

Table 12: Global configuration register content

### 4.3.2 Channel configuration register

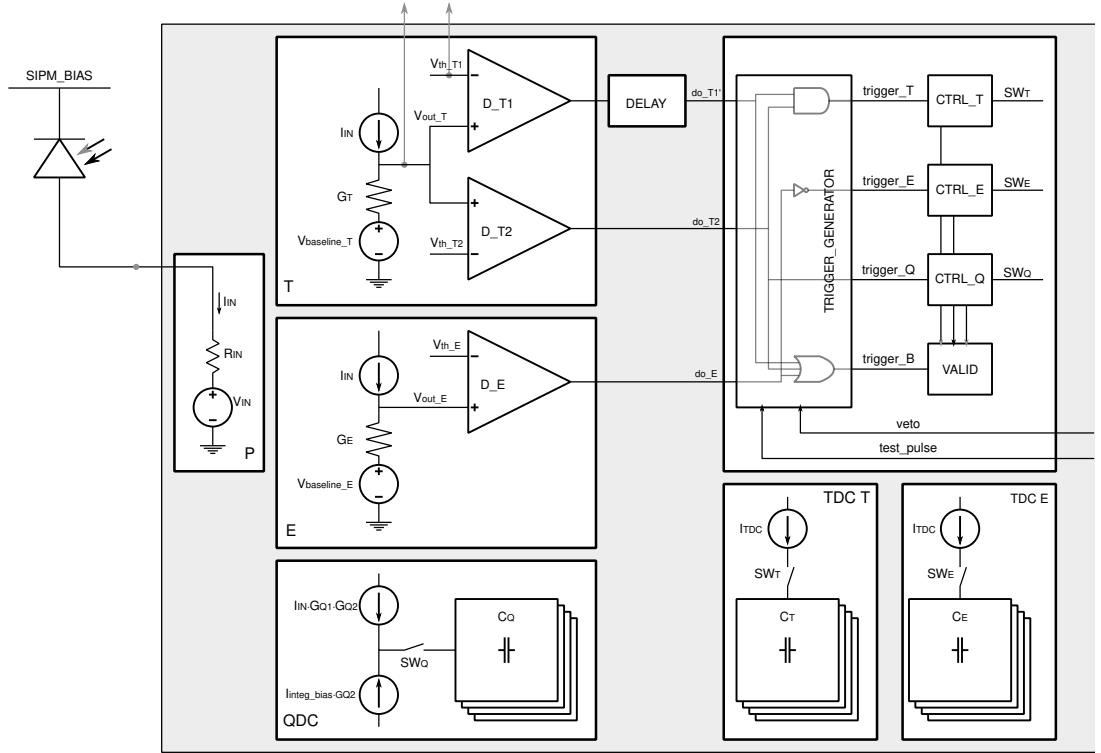

| Description                      | Bits               | Default value | Symbol                | Section |
|----------------------------------|--------------------|---------------|-----------------------|---------|
| Set trigger mode                 | 1...0              | 0b00          | Set trigger_mode_1    | 5.4     |
| Enable digital debug output mode | 3...2              | 0b00          | debug_mode            | 6.2     |
|                                  | 5...4              | 0b00          | sync_chain_length     |         |
| Set additional channel dead time | 11...6             | 0b000000      | dead_time             | 5.8     |
| Set event counter mode           | 15...12            | 0b0000        | counter_mode          | 5.9     |
|                                  | 20...16            | 0b11110       | tac_max_age           |         |
|                                  | 25...21            | 0b01010       | tac_min_age           |         |
| Set trigger mode                 | 27...26            | 0b01          | Set trigger_mode_2_t  | 5.4     |
| Set trigger mode                 | 30...28            | 0b010         | Set trigger_mode_2_e  | 5.4     |
| Set trigger mode                 | 32...31            | 0b01          | Set trigger_mode_2_q  | 5.4     |
| Set trigger mode                 | 35...33            | 0b101         | Set trigger_mode_2_b  | 5.4     |
|                                  | 36...36            | 0b1           | branch_en_eq          |         |
|                                  | 37...37            | 0b1           | branch_en_t           |         |
| Set ToT or QDC mode              | 38...38            | 0b1           | qdc_mode              | 5.5     |
|                                  | 39...39            | 0b0           | Set trigger_b_latched |         |
| Set QDC minimum integration time | 46...40            | 0b0100010     | min_intg_time         | 5.7     |
| Set QDC maximum integration time | 53...47            | 0b0100010     | max_intg_time         | 5.7     |
| Set input polarity               | 55...54            | 0b00          | output_en             | 5.1     |
|                                  | 56...56            | 0b0           | qtx2_en               |         |
| Set post-amplifier T baseline    | 62...57            | 0b111101      | baseline_t            | 5.2     |
| Set T1 discriminator threshold   | 68...63            | 0b111000      | vth_t1                | 5.2     |
| Set T2 discriminator threshold   | 74...69            | 0b101111      | vth_t2                | 5.2     |
| Set E discriminator threshold    | 80...75            | 0b010011      | vth_e                 | 5.3     |
| Set post-amplifier E baseline    | 82, 83, 81         | 0b110         | baseline_e            | 5.3     |
| do_T1 delay                      | 84, 88, 87, 85, 86 | 0b01110       | fe_delay              | 5.4     |
| Set post-amplifier T gain        | 89...90            | 0b00          | postamp_gain_t        | 5.2     |
| Set post-amplifier E gain        | 91...92            | 0b00          | postamp_gain_e        | 5.3     |
|                                  | 94...93            | 0b00          | postamp_sh_e          |         |
| Enable QDC mode                  | 95...95            | 0b1           | intg_en               | 5.5     |
| Enable QDC mode                  | 96...96            | 0b1           | intg_signal_en        | 5.5     |
| Set integrator gain              | 99...97            | 0b001         | att                   | 5.7     |
|                                  | 103...100          | 0b0000        | tdc_current_t         |         |
|                                  | 107...104          | 0b0000        | tdc_current_e         |         |
|                                  | 109...108          | 0b00          | fe_tp_en              |         |
|                                  | 110                | 0b1           | n/u                   |         |
| Set integrator gain              | 112...111          | 0b00          | integ_source_sw       | 5.7     |
|                                  | 117...115          | 0b010         | t1_hysteresis         |         |
|                                  | 120...118          | 0b010         | t2_hysteresis         |         |
|                                  | 123...121          | 0b010         | e_hysteresis          |         |
|                                  | 124...124          | 0b1           | hysteresis_en_n       |         |

Table 13: Channel configuration register content

## 5 Channel

TOFPET 2C consists of 64 independent channels, each containing independent amplifiers, discriminators, time-to-digital converters and charge-to-digital converters (figure 6).

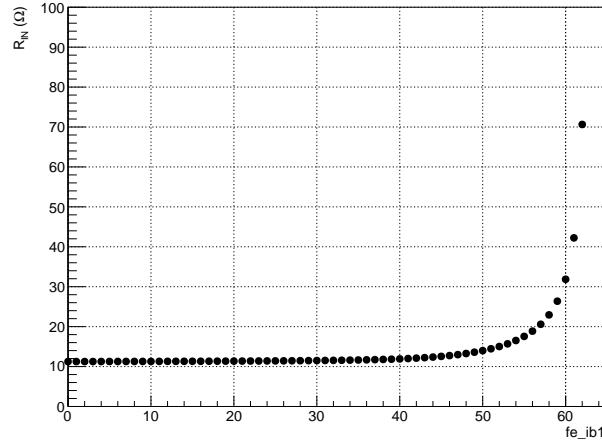
Figure 6: Simplified equivalent TOFPET 2C channel.



- The input stage (P) provides a low impedance input ( $R_{IN}$ ) to the sensor's output current signal.
- The input current  $I_{IN}$  is then replicated into 3 branches: T, E and Q.
- T and E branches feed into discriminators which are used to control the trigger logic.
- Q branch integrates a replica of the input current, which can then be digitized by an internal ADC.

### 5.1 Input stage

- With TOFPET 2D the input stage can be configured to accept positive or negative input pulses as per table 14
- The input has a DC offset for internal biasing, which depends on the polarity selection.



Table 14: Input polarity selection

| input_polarity | output_en | Input polarity | $V_{IN}$ |                      |
|----------------|-----------|----------------|----------|----------------------|
| 0b1            | 0b00      | Positive       | 800 mV   |                      |
| 0b0            | 0b01      | Negative       | 400 mV   | Only with TOFPET 2D. |

#### 5.1.1 Input stage impedance tuning

The input stage has an adjustable bias current  $I_{B1}$  (see figure 7) which sets the input impedance  $R_{IN}$  as per figure 8.

- Any significant current sourced or sunk by the TOFPET 2C from the sensor will add to  $I_{B1}$  and thus shift the operation point.

Figure 7: Input stage bias  $I_{B1}$  versus  $fe\_ib1$ Figure 8: Input stage impedance versus  $fe\_ib1$ 

### 5.1.2 Performance versus power consumption

The input noise  $V_{noise\_T}$  is a function of the capacitance at the input and of the setting  $fe\_ib2$  and  $fe\_ib2\_x2$ , but these settings also have a major effect in TOFPET 2C power consumption (figure 22).

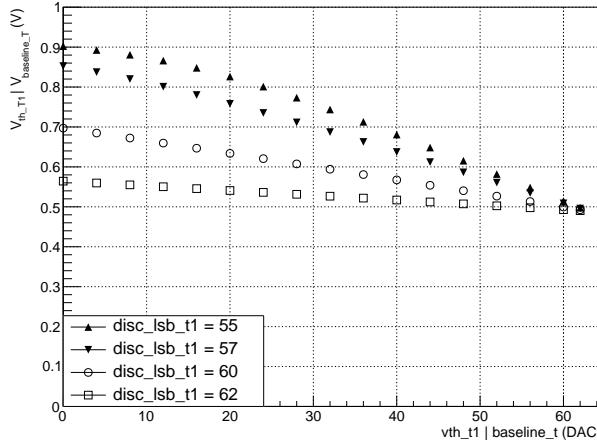
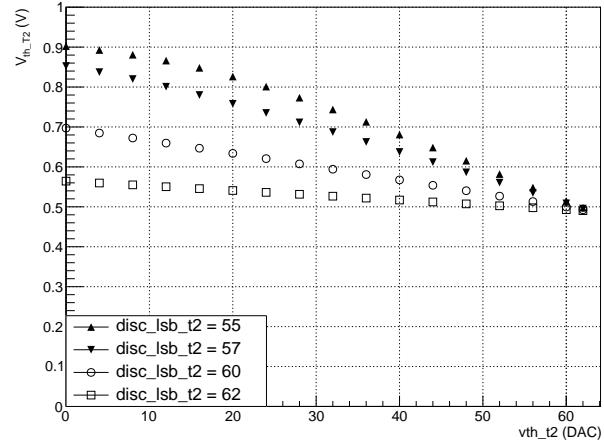
The default value setting has been experimentally verified by PETsys as resulting in the good timing measurement when reading positively biased SiPM with a good power consumption. However, on a per application basis, different trade-offs can be made between power and noise.

## 5.2 Transimpedance amplifier (branch T)

Table 15: Transimpedance gain (T)

| postamp_gain_t | $G_T$                   |
|----------------|-------------------------|
| 0b00           | $3000 \Omega$ (nominal) |
| 0b10           | $1500 \Omega$           |
| 0b01           | $750 \Omega$            |
| 0b11           | $375 \Omega$            |

Table 16: Transimpedance gain (E)



| postamp_gain_e | $G_E$                  |
|----------------|------------------------|
| 0b00           | $300 \Omega$ (nominal) |
| 0b10           | $150 \Omega$           |
| 0b01           | $75 \Omega$            |
| 0b11           | $38 \Omega$            |

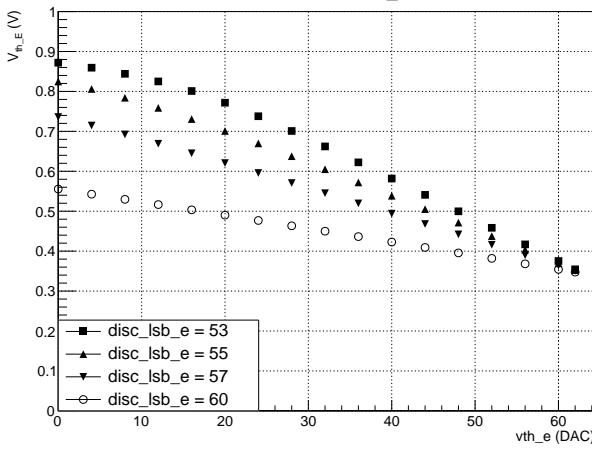
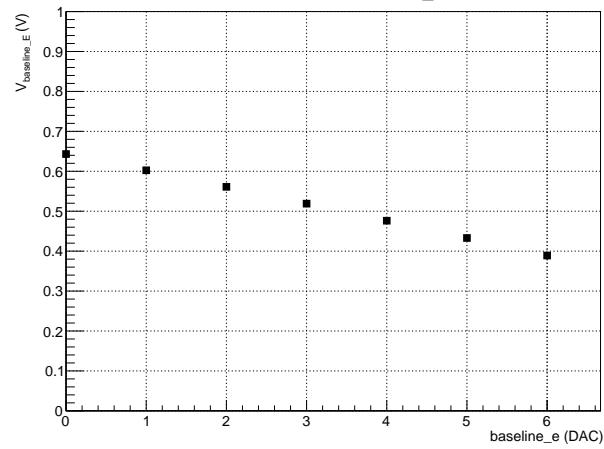
The transimpedance amplifier converts the replica of the input current  $I_{IN}$  into a voltage  $V_{out\_T}$  with gain  $G_T$  plus an offset  $V_{baseline\_T}$ .  $G_T$  is adjustable (see table 15). The amplifier saturates for  $V_{out\_T} > V_{sat}$ .

$V_{out\_T}$  connects to two identical discriminators (D\_T1 and D\_T2) whose threshold voltages ( $V_{th\_T1}$  and  $V_{th\_T2}$ ) are set by 6-bit DACs vth\_t1 and vth\_t2 respectively. The offset  $V_{baseline\_T}$  is set by another 6-bit DAC baseline\_t and is used to trim the the baseline of  $V_{out\_T}$  relatively to the input of the discriminators.

Important notes:

- vth\_t1 and vth\_t2 should not be set to 0b111111.
- baseline\_t should not be set to 0b111111.
- The setting of  $V_{baseline\_T}$ ,  $V_{th\_T1}$  and  $V_{th\_T2}$  are affected by the global settings disc\_lsb\_t1 and disc\_lsb\_t2 respectively, according to figure 9 and 10.
- $V_{out\_T}$ ,  $V_{th\_T1}$  and  $V_{th\_T2}$  approach saturation at  $\approx 900$  mV.

Figure 9:  $V_{th\_T1}$ Figure 10:  $V_{th\_T2}$ 



### 5.3 Transimpedance amplifier (branch E)

Branch E is similar to branch T, with the following differences:

- Gain  $G_E$  is lower (see table 16), allowing a higher range of signals before saturation.
- It feeds a single discriminator D\_E.
- $V_{baseline\_E}$  is set by a 3-bit DAC.

Important notes:

- $vth\_e$  should not be set to 0b111111.
- $baseline\_e$  should not be set to 0b111.
- $V_{th\_E}$  is affected by the global setting  $disc\_lsb\_e$ , according to figure 11.
- Both  $V_{out\_E}$  and  $V_{th\_E}$  approach saturation at  $\approx 900$  mV.

Figure 11:  $V_{th\_E}$ Figure 12:  $V_{baseline\_E}$ 

#### 5.3.1 Performance versus power consumption

The slew rate of the discriminators  $V_{noise\_T}$  is a function of the capacitance at the input and of the setting  $sf\_disc\_bias$ , but this setting also has an effect in TOFPET 2C power consumption (figure 23).

The default value setting has been experimentally verified by PETsys as resulting in the good timing measurement when reading positively biased SiPM with a good power consumption. However, on a per application basis, different tradeoffs can be made between power and noise.

## 5.4 Event trigger logic

The output of the 3 discriminator connects to TRIGGER\_GENERATOR logic box which generates 4 trigger signals: trigger\_T, trigger\_Q, trigger\_E and trigger\_B, according to the logic expressions in tables 18 to 22.

- The output of discriminator T1 (do\_T1) passes through a configurable delay line (do\_T1'), as per table 17.
- The discriminators can be replaced by test\_pulse, as per table 18.

The trigger processing is illustrated by figure 13.

1. The trigger logic starts in the READY state, prepared to accept an upcoming event.
2. The state moves from READY to TRIGGERED state upon a rising edge of either trigger\_T, trigger\_E or trigger\_Q.
3. The state moves from TRIGGERED to event VALIDATE when trigger\_B is zero.

An event is valid if rising edges have been detected on all of trigger\_T, trigger\_E and trigger\_Q. In this case, the logic moves to ACCEPT, queueing the event for digitization and transmission.

If only one or two of trigger\_T, trigger\_E and trigger\_Q had rising edges, the logic moves to DISCARD, queueing the event for rejection.

4. After ACCEPT or DISCARD, the logic moves to REARM and then to READY again.

Figure 13: Trigger processing states.

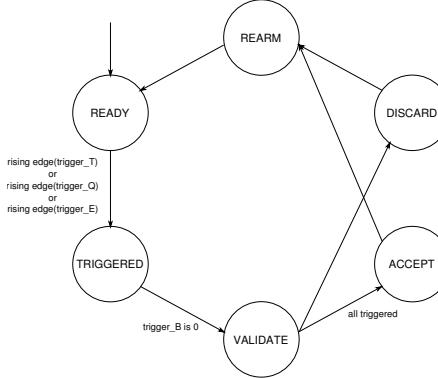



Table 17: D\_T1 delay settings

| fe_delay | Delay line length         |
|----------|---------------------------|
| 0b01101  | 3 ns                      |
| 0b01110  | 6 ns                      |
| 0b01111  | 8 ns                      |
| 0b10000  | OFF (Delay line bypassed) |

Table 18: Channel trigger mode

| trigger_mode_1 | Description                                    |
|----------------|------------------------------------------------|
| 0b00           | Normal trigger using discriminators' output.   |
| 0b01           | All discriminators are replaced by test_pulse. |
| 0b10           | All discriminators are inverted.               |
| 0b11           | Channel disabled.                              |

Table 19: trigger\_T generation

| trigger_mode_2_t | trigger_T                                  |
|------------------|--------------------------------------------|
| 0b00             | $do\_T1' \dagger$                          |
| 0b01             | $do\_T1' \cdot do\_T2 \dagger_{(nominal)}$ |
| 0b10             | $do\_T1' \cdot do\_E \dagger$              |
| 0b11             | $do\_E$                                    |

Table 20: trigger\_Q generation

| trigger_mode_2_q | trigger_Q            |
|------------------|----------------------|
| 0b00             | $do\_T1'$            |
| 0b01             | $do\_T2_{(nominal)}$ |
| 0b10             | $do\_E$              |

■  $\dagger$ This trigger mode should only be used with delay line set to OFF.

■  $\ddagger$ This trigger mode should not be used with delay line set to OFF.

For more information see section 9.

Table 21: trigger\_E generation

| trigger_mode_2_e | trigger_e                 |
|------------------|---------------------------|
| 0b000            | do_T1'                    |
| 0b001            | do_T2                     |
| 0b010            | do_E <sub>(nominal)</sub> |
| 0b011            | do_T1' · do_T2 ≠          |
| 0b100            | do_T1' · do_E ≠           |
| 0b101            | do_T1'                    |
| 0b110            | do_T2                     |
| 0b111            | do_E                      |

Table 22: trigger\_B generation

| trigger_mode_2_b | trigger_B                                  |
|------------------|--------------------------------------------|
| 0b000            | do_T1'                                     |
| 0b001            | do_T2                                      |
| 0b010            | do_E                                       |
| 0b011            | do_T1' + do_T2                             |
| 0b100            | do_T1' + do_E                              |
| 0b101            | do_T1' + do_T2 + do_E <sub>(nominal)</sub> |

Table 23: Veto setting

| veto_mode | Trigger mode.                                                                          |
|-----------|----------------------------------------------------------------------------------------|
| 0b000000  | Normal operation.                                                                      |
| 0b000001  | Triggering is inhibited for all channels when input SS is active.                      |
| 0b000010  | Triggering is inhibited for all channels when input TEST_PULSE is active.              |
| 0b000011  | Triggering is inhibited for all channels when either input SS or TEST_PULSE is active. |

## Errata

- When trigger\_mode\_1 is set to 0b01 there is a  $\approx 400$  ps window in each clock cycle where TOFPET 2 fails to detect the triggers. This behaviour is not observed in normal operation.
- In normal operation with high dark event rates a fraction of detected events have their timestamps offset by  $\approx \pm 300$  ps. No work around is known for these except to reduce dark event rate (e.g. by lowering sensor bias voltage).

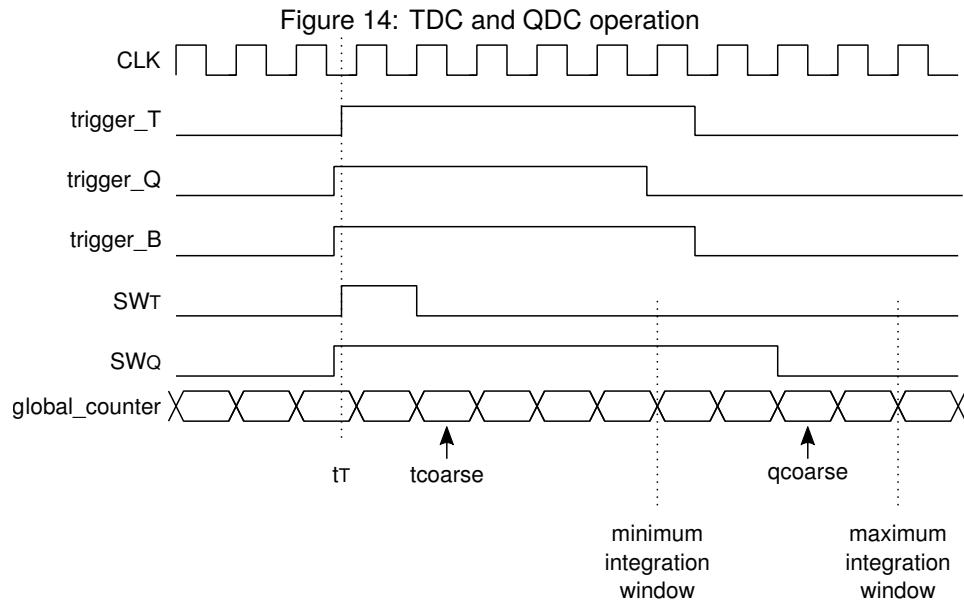
## 5.5 Measurement mode

Table 24: TOFPET channel measurement modes

| qdc_mode | intg_en | intg_signal_en | Measurement mode            |
|----------|---------|----------------|-----------------------------|
| 0b1      | 0b1     | 0b1            | Time and charge (QDC) mode. |
| 0b0      | 0b0     | 0b0            | Dual time (ToT) mode.       |

### Time and Charge (QDC) mode

In this mode the ASIC performs


- The TDC T measures the time of the rising edge of trigger\_T.
- The QDC measures the integrated charge from the rising edge of trigger\_Q until the end of the integration window (section 5.7).
- Valid even require rising edges on trigger\_T, trigger\_Q and trigger\_E.
- trigger\_E is used only for energy selection and the TDC E is unused.

### Dual time (ToT) mode

In this mode the ASIC performs

- The TDC T measures the time of the rising edge of trigger\_T.
- The TDC E measures the time of the rising edge of trigger\_E.
- Valid even require rising edges on trigger\_T and trigger\_E.
- trigger\_Q is ignored and QDC is unused.

## 5.6 TDC



TDC operation is illustrated in figure 14.

1. On the rising edge of trigger\_T switch  $SW_T$  closes, charging analog buffer  $C_T$  with current  $I_{TDC}$ .
2. On the 2nd next rising edge of CLK,  $SW_T$  opens, stopping the charging process.
3. The value of a global\_counter is latched on the next clock providing value  $tcoarse$ .

If the event is valid, the voltage stored in  $C_T$  will be digitized as  $t_{fine}$ .

In first approximation, the time  $t_T$  of the rising edge of trigger\_T can be calculated as per equation 1.

$$t_T = tcoarse - \frac{t_{fine}}{I_{TDC}} \quad (1)$$

where  $I_{TDC} = \frac{1}{TDC_{LSB}}$ .

The E TDC operates identically, using trigger\_E signal and producing  $ec coarse$  and  $efine$  values.

## 5.7 QDC

QDC operation is illustrated in figure 14.

1. On the rising edge of trigger\_Q switch  $SW_Q$  closes, charging analog buffer  $C_Q$  with a replica of the input current signal  $I_{IN} \cdot G_Q$  plus a DC current  $I_{integ\_bias}$ .
2.  $SW_Q$  opens on a rising edge of CLK when either
  - trigger\_B is zero and minimum integration time ( $min\_intg\_time$ ) has been met.
  - Maximum integration time ( $max\_intg\_time$ ) has been reached.
3. The value of a global\_counter is latched on the next clock providing value  $qcoarse$ .

Thus, the total charge stored in  $C_Q$  is given by equation 2.

$$Q_{total} = \int_{rise(SW_Q)}^{fall(SW_Q)} (I_{IN} \cdot G_Q + I_{integ\_bias}) \quad (2)$$

If the event is valid, the charge stored in  $C_Q$ , minus an offset  $Q_{offset}$  will be digitized as  $q_{fine}$ .

$$q_{fine} = Q_{total} - Q_{offset} \quad (3)$$

The time of  $fall(SW_Q)$  is given by  $qcoarse$  while the time of  $rise(SW_Q)$  can be approximated by  $t_T$ . Thus, in first approximation, the input signal charge  $Q_{IN}$  can be calculated as per equation 4.

$$Q_{IN} = \int_{rise(SW_Q)}^{fall(SW_Q)} I_{IN} = \frac{q_{fine} - I_{integ\_bias} \cdot (qcoarse - t_T) - Q_{offset}}{G_Q} \quad (4)$$

## Integrator gain and range

The gain of the integrator ( $G_Q$ ) is configurable.

- $G_Q$  affects the dynamic range of the input current (table 25).
- $G_Q$  also affects offset and gain relative to  $I_{integ\_bias}$ . Different  $G_Q$  settings require different ASIC calibrations.

Table 25: Integrator gain  $G_{Q1}$

| att   | v_att_diff_bias_ig | $G_{Q1}$ |
|-------|--------------------|----------|
| 0b000 | 0b100011           | 2.5      |
| 0b001 | 0b100011           | 1.00     |
| 0b011 | 0b111000           | 1.70     |
| 0b100 | 0b100011           | 3.65     |
| 0b101 | 0b100011           | 1.39     |

## Integration time

The integration time can be set either as a window ( $min\_intg\_time < max\_intg\_time$ ) or as a fixed value ( $min\_intg\_time = max\_intg\_time$ ). The settings are as per table 27.

The range of usable integration window lengths depends on the value of  $I_{integ\_bias}$  as shown in figure 15.  $I_{integ\_bias}$  can be adjusted as per table 26.

Figure 15: qfine as function of integration window length.

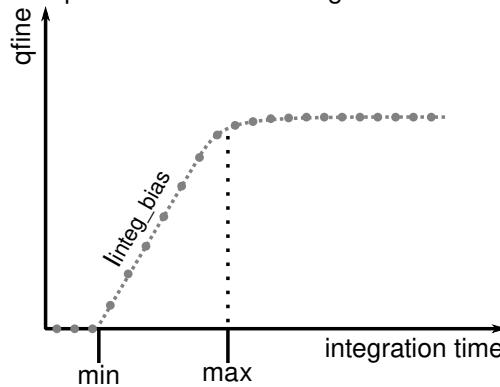


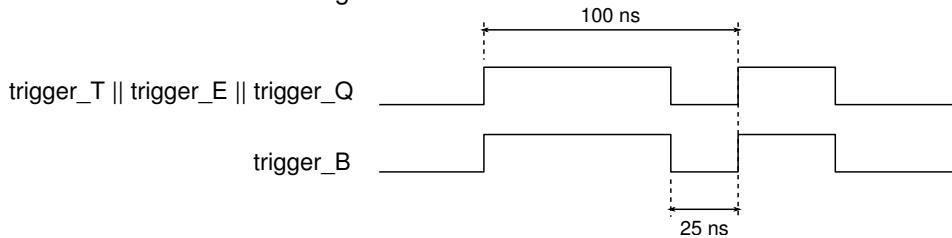

Table 26: Integrator bias  $I_{integ\_bias}$

| imirror_bias_top | Typical usable integration window (ns) |
|------------------|----------------------------------------|
| 23               | 250 – 500                              |
| 26               | 375 – 750                              |
| 29               | 875 – 1625                             |
| 30               | 1500 – 2100                            |

Table 27: Integrator window settings

| Configuration value (N) | Actual integration time (TDC_CLK periods) |              |
|-------------------------|-------------------------------------------|--------------|
|                         | TOFPET 2C                                 | TOFPET 2B    |
| 0..15                   | $N$                                       |              |
| 16..31                  | $2 \times N - 16$                         |              |
| 32..127                 | $4 \times N - 78$                         | $4 \times N$ |

## 5.8 Multi-buffering


Each channel has 4 sets of  $C_T$ ,  $C_E$  and  $C_Q$  analog buffers (figure 6) where analog values are stored before being digitized. Every time the channel goes through REARM state (figure 13), a new buffer set is selected round-robin. This allows the channel to rearm without waiting for the previous event to be digitized. When an event is valid and digitized, the *tac\_id* number of the analog buffer set used to process that event is transmitted along the event.

Due to process variations, each analog buffer should be calibrated for optimal results.

### Dead time

- Minimum dead time between TRIGGERED and READY is 100 ns.<sup>1</sup>
- Minimum dead time between VALIDATE and READY is 25 ns.<sup>1</sup>
- Maximum rearm rate is 10 MHz.<sup>1</sup>

Figure 16: Channel read time



Additional dead time can be added by adjusting the channel *dead\_time* configuration parameter. When this is different than zero, the channel will require an additional N clock cycles with *trigger\_B* inactive before re-arming.

### Refresh

While in the READY state, the voltages stored in the currently selected set of  $C_X$  buffers shift slowly due to leakage effects, which affects the time and charge measurements. In order to keep this effect under 0.1 LSB, whenever the channel has been in READY state for  $99.2 \mu s^1$ , an invalid event is triggered causing the channel to rearm with the next, fresh, set of  $C_X$ .

## 5.9 Event counter

TOFPET 2C includes event counting features, which allow events to be counted without being transmitted (and thus, not subject to event conversion and transmission limitation).

The counter feature allows the counting period to be globally set (table 28) and the counting mode to be set on a per-channel basis (table 29).

The count data is transmitted using the same data links as the events.

Table 28: Counter period settings.

| counter_en | counter_period | Counting period          |
|------------|----------------|--------------------------|
| 0b0        | any            | Counter disabled         |
| 0b1        | 0x0            | $2^{10}$ TDC_CLK cycles. |
| 0b1        | 0x1            | $2^{12}$ TDC_CLK cycles. |
| 0b1        | 0x2            | $2^{14}$ TDC_CLK cycles. |
| 0b1        | 0x3            | $2^{16}$ TDC_CLK cycles. |
| 0b1        | 0x4            | $2^{18}$ TDC_CLK cycles. |
| 0b1        | 0x5            | $2^{20}$ TDC_CLK cycles. |
| 0b1        | 0x6            | $2^{22}$ TDC_CLK cycles. |
| 0b1        | 0x7            | $2^{24}$ TDC_CLK cycles. |

<sup>1</sup>200 MHz TDC\_CLK.

Table 29: Channel counting modes.

| <b>counter_mode</b> | <b>Counting mode</b>                                                                                                |
|---------------------|---------------------------------------------------------------------------------------------------------------------|
| 0x0                 | Never count. If count_en is 0b1, the transmitted value is always zero.                                              |
| 0x1                 | Always count. If count_en is 0b1, the transmitted value should be $\min \{ \text{counting period}, 2^{24} \} - 1$ . |
| 0x2                 | Count valid events.                                                                                                 |
| 0x3                 | Count invalid events.                                                                                               |
| 0x8                 | Count all events.                                                                                                   |
| 0xC                 | Count number of rising edges in trigger_B.                                                                          |
| 0xF                 | Count number of cycles during which trigger_B is active.                                                            |

## 6 Debug outputs

TOFPET 2C has two sets of debug outputs.

### 6.1 Channel 63 analog debug outputs

Channel 63's *Vout\_T* and *Vth\_T1* are exposed into two analog pins, CH63\_VOUT\_T and CH63\_VOUT\_TH1. These can be enabled by setting the global *adebug\_out\_mode* and *adebug\_buffer* configuration values per table 30.

Table 30: Analog debug outputs

| <b>adebug_out_mode</b> | <b>adebug_buffer</b> | Analog debug output |
|------------------------|----------------------|---------------------|
| 0b11                   | 0b1                  | Disabled.           |
| 0b01                   | 0b0                  | Enabled             |

With default settings, CH63\_VOUT\_T should have a baseline of  $\approx$ 460 mV, while CH63\_VOUT\_TH1 should have a DC voltage between  $\approx$ 460 mV and  $\approx$ 660 mV depending on the settings of threshold T1.

Remarks:

- CH63\_VOUT\_T must be probed with a very low capacitance circuit (eg, an oscilloscope active probe).
- The signal CH63\_VOUT\_T may be slower than the actual *Vout\_T*.

### 6.2 Digital analog debug outputs

Table 31: Digital debug outputs

| <b>(global) debug_mode</b> | <b>(channel) debug_mode</b> | <b>tx3</b> | <b>tx2</b> | <b>tx1</b> |
|----------------------------|-----------------------------|------------|------------|------------|
| 0b0                        | 0b00                        | Data       | Data       | Data       |
| 0b1                        | 0b00                        | 0          | 0          | 0          |
| 0b1                        | 0b01                        | do_T1'     | do_T2      | do_E       |
| 0b1                        | 0b10                        | trigger_T  | trigger_E  | trigger_B  |

Remarks:

- This feature can only be used when TOFPET 2C is configured to transmit data over a single link (tx0).
- Do not enable *debug\_mode* on more than a single channel per ASIC.

## 7 Data transmission

Event and counter data are transmitted over TX[3..0] using 8B/10B coding, as sequence of 8 symbols (80-bit) containing 1 K28.1 symbol and 7 data symbols representing 56-bit of data. K28.5 symbols are transmitted during link idle times.

K28.1 and K28.5 are the only K codes transmitted by TOFPET 2C. This can be used for the 0011111xxx and 1100000xxx bit sequences

The link operation mode is configurable, as described in tables 32 and 33:

- 4, 2 or 1 links can be used.
- Links can operate in SDR or DDR mode.

Table 32: Number of active links

| tx_nlinks | Links active |
|-----------|--------------|
| 0b00      | 1 (fig. 17)  |
| 0b01      | 2 (fig. 18)  |
| 0b10      | 4 (fig. 19)  |

Table 33: Link rate mode

| tx_ddr | Link mode                                          |
|--------|----------------------------------------------------|
| 0b0    | Links operate in SDR mode (1 bit per CLK period).  |
| 0b1    | Links operate in DDR mode (2 bits per CLK period). |

Figure 17: Data transmission with 1 link in DDR mode.

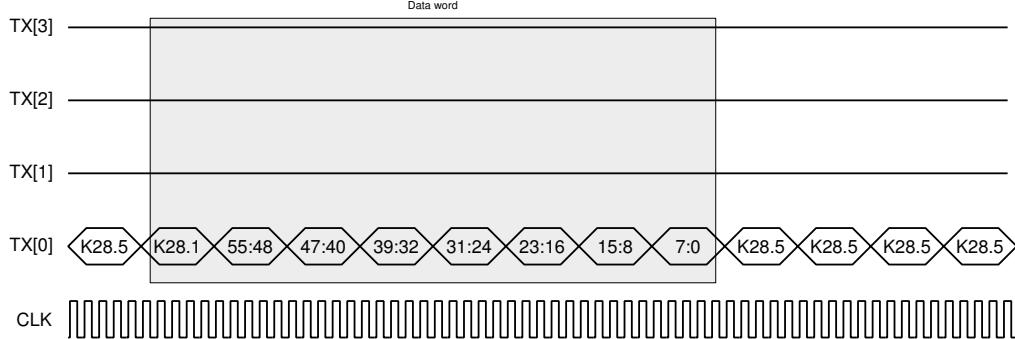
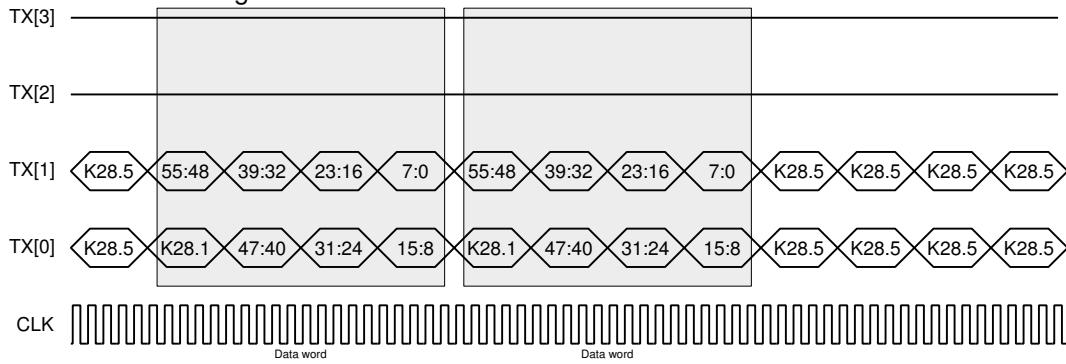




Figure 18: Data transmission with 2 links in DDR mode.



### 7.1 Link receiver training patterns

In addition to normal data transmission, the data links can also be used to transmit patterns for link receiver training as per table 34.

### 7.2 Event data words

When a valid event is detected, it is digitized and transmitted outside, as per table 35.

Figure 19: Data transmission with 4 links in DDR mode.

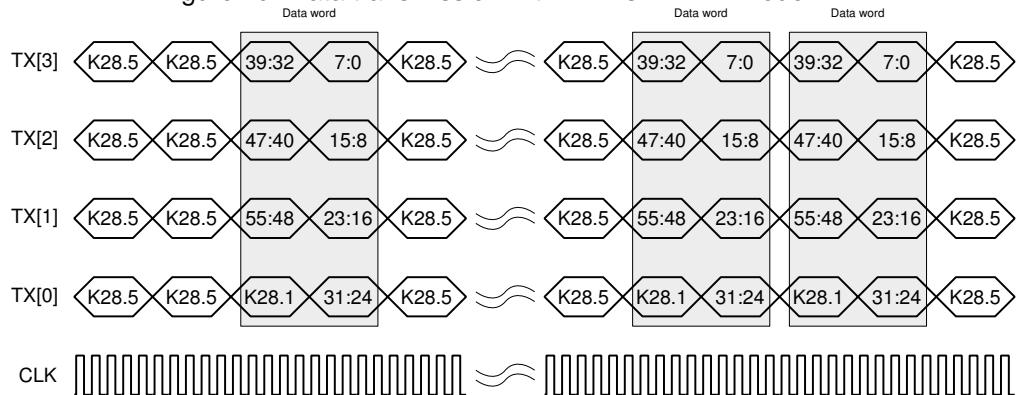



Table 34: Link operation mode

| tx_mode | Link operation mode                                                 |
|---------|---------------------------------------------------------------------|
| 0b00    | Receiver training pattern 0b00: sequences of 0101010101... (fig 20) |
| 0b01    | Receiver training pattern 0b01: sequences of 0000011111... (fig 21) |
| 0b10    | Normal data transmission.                                           |

Figure 20: Data link training pattern 0b00 (4 links selected).

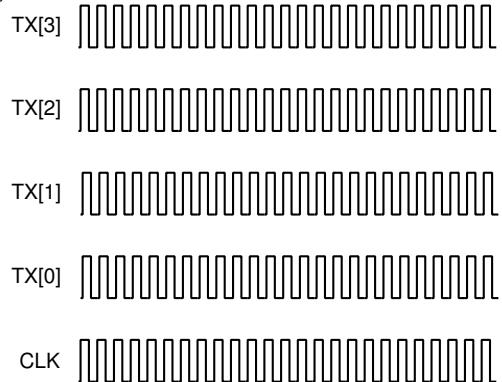



Figure 21: Data link training pattern 0b01 (4 links selected).



- $t_{coarse}$ ,  $e_{coarse}$  and  $q_{coarse}$  are taken from a free running counter and are thus subject to wrap-around.
- The digitization and transmission process takes an average of  $\approx 2 \mu\text{s}$  but can take up to  $20 \mu\text{s}$ .
- The  $t_{fine}'$  value which is actually transmitted by TOFPET has a wrap around effect according to equation 5. The same applies for  $e_{fine}'$  and  $q_{fine}'$ .

$$t_{fine}' = (t_{fine} + 1024 - 14) \bmod 1024 \quad (5)$$

Table 35: Data word content

| Bits  | Content           | Description                                               |
|-------|-------------------|-----------------------------------------------------------|
| 55:54 | 0b10              | Word type identifier                                      |
| 53:48 | <i>channel_id</i> | Input channel index.                                      |
| 47:46 | <i>tac_id</i>     | Internal channel buffer index.                            |
| 45:30 | <i>tcoarse</i>    | T TDC coarse time tag.                                    |
| 29:20 | <i>e/qcoarse</i>  | E TDC coarse time tag or QDC end of integration time tag. |
| 19:10 | <i>tfine'</i>     | T TDC fine time measurement.                              |
| 9:0   | <i>e/qfine'</i>   | E TDC fine time measurement or QDC charge measurement.    |

### 7.3 Counter data words

Table 36: Count word content

| Bits   | Content           | Description          |
|--------|-------------------|----------------------|
| 55:48  | 0b00000001        | Word type identifier |
| 47:30: | Reserved          |                      |
| 29:24  | <i>channel_id</i> | Input channel index. |
| 23:0   | count             | Count value.         |

### 7.4 Heartbeat words

If nothing has been transmitted for some time, the ASIC will send a heartbeat word  $t_{idle}$  clock cycles after the last word has been sent.

- The transmission may appear periodic but it's actually relative to the last word sent.

Table 37: Heartbeat word content

| Bits | Content          | Description          |
|------|------------------|----------------------|
| 55:0 | 0x000000AABBCCDD | Word type identifier |

Table 38: Heartbeat idle delays

| Link mode | Links active | $t_{idle}$ (CLK cycles) |
|-----------|--------------|-------------------------|
| SDR       | 1            | 81920                   |
|           | 2            | 40960                   |
|           | 4            | 20480                   |
| DDR       | 1            | 40960                   |
|           | 2            | 20480                   |
|           | 4            | 10240                   |

## 8 Typical performance characteristics

$VDD12 = 1.2V$ ,  $VDD25 = 2.5 V$ ,  $T_A = 18^\circ C$

Figure 22:  $I_{VDD12}$  versus  $fe\_ib2$

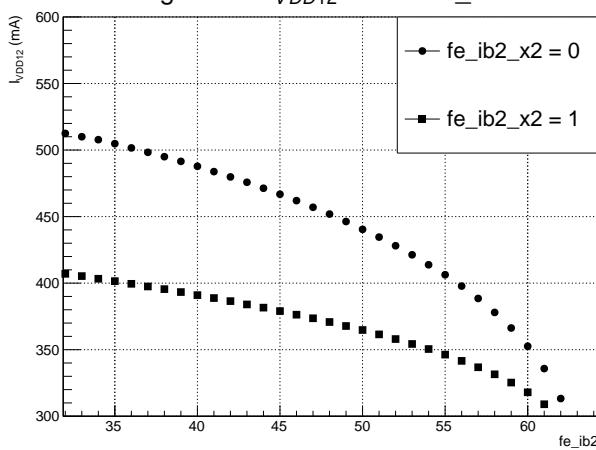



Figure 23:  $I_{VDD12}$  versus  $disc\_sf\_bias$

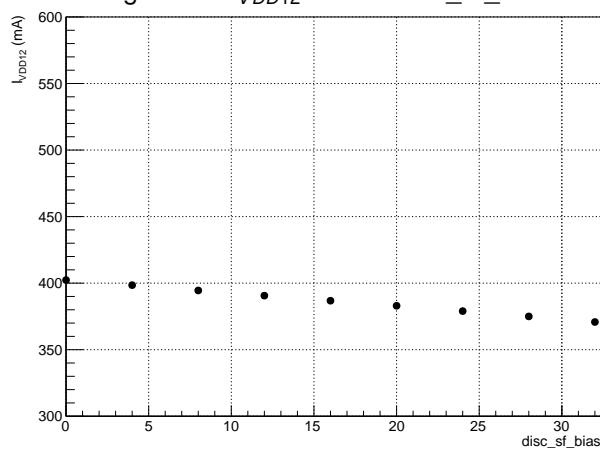



Figure 24: Noise count rate versus threshold (T1).

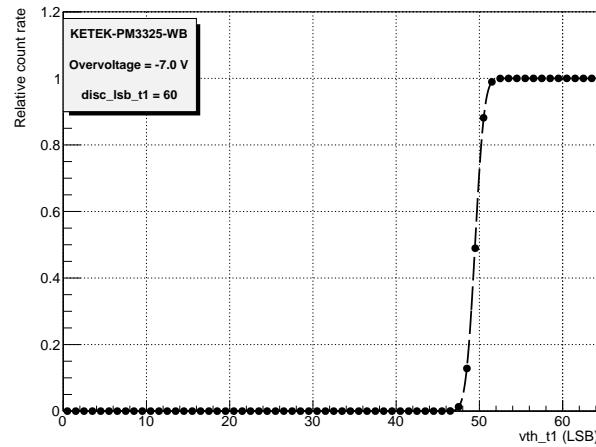



Figure 25: SiPM dark count rate versus threshold (T1).

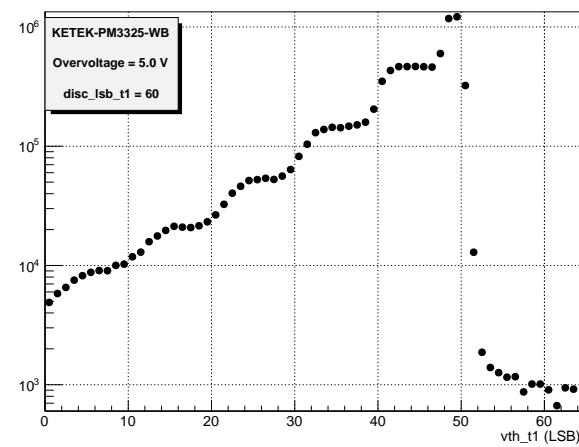



Figure 26: TDC DNL vs. Output Code

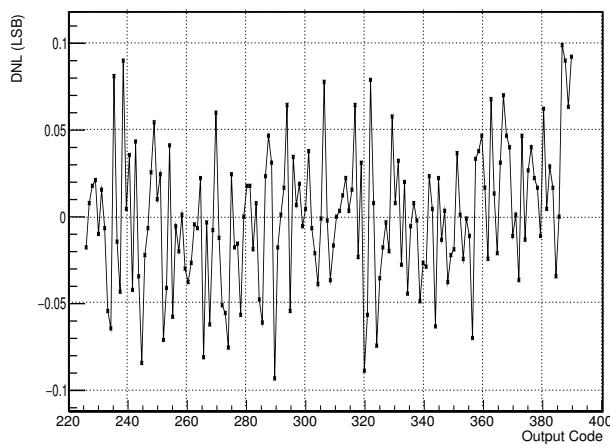



Figure 27: TDC INL vs. Output Code

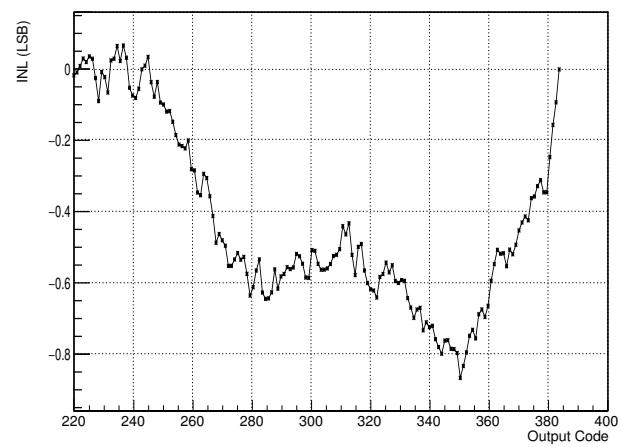



Figure 28: TDC bin distribution

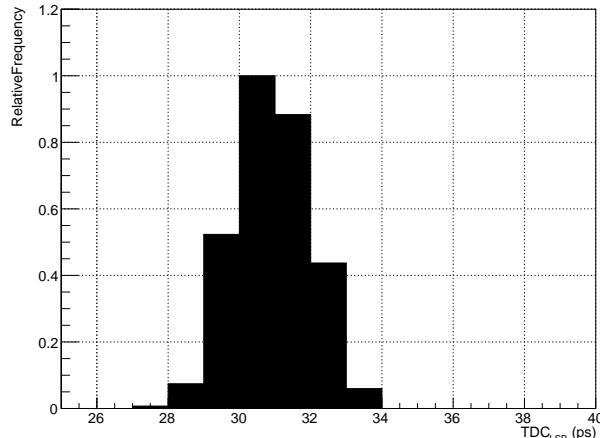



Figure 29: TDC error: 1 vs 64 simultaneous hits

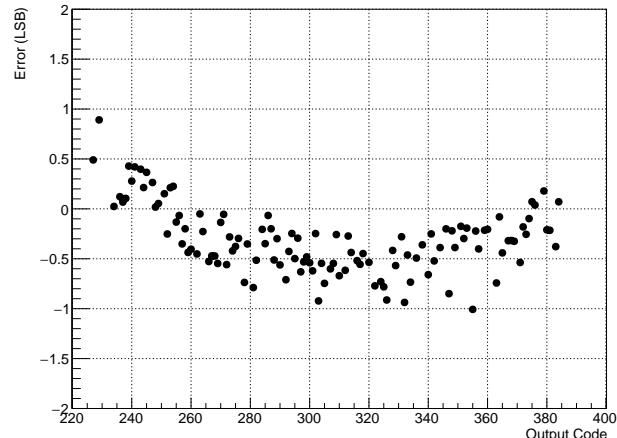



Figure 30: QDC DNL vs. Output Code

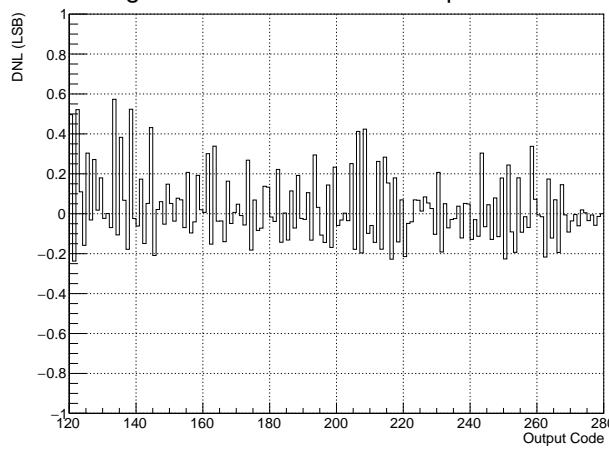



Figure 31: QDC INL vs. Output Code

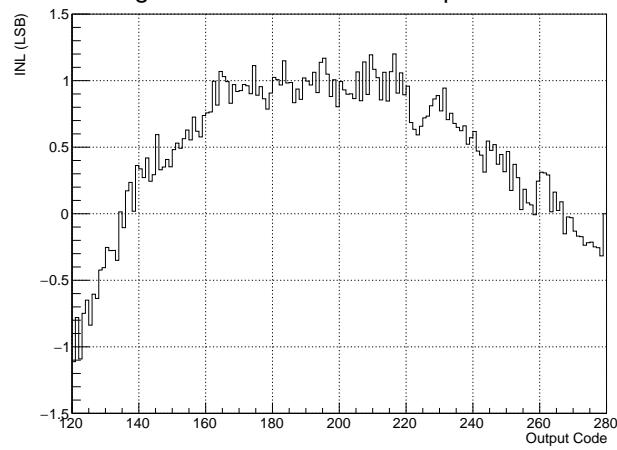



Figure 32: QDC noise

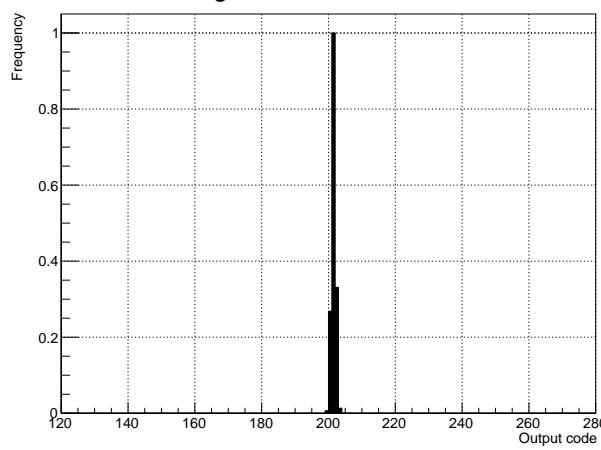



Figure 33: QDC error: 1 vs 64 simultaneous hits

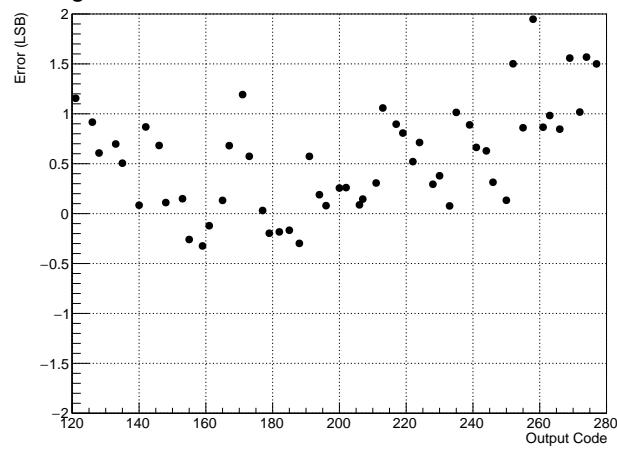



Figure 34: TDC temperature drift

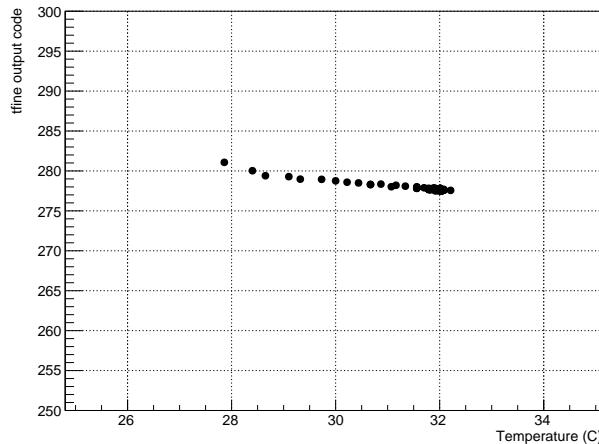
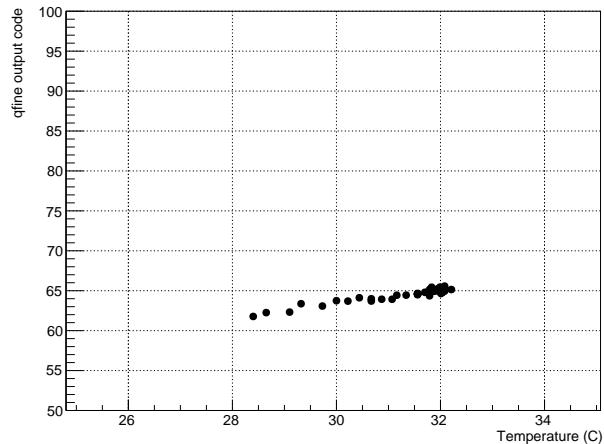




Figure 35: QDC temperature drift



## 9 Trigger modes

TOFPET 2 implements a variety of configurable trigger modes. The following is a non-exhaustive list of possible trigger configurations intended as guide for users.

### 9.1 Single threshold trigger: T1

This mode is suitable when the both the adequate timing threshold and amplitude discrimination are identical and within the dynamic range of the T branch. In this mode discriminator T1 is used for all purposes and all events which cross vth\_T1 are accepted.

Table 39: Single threshold trigger: T1

| Setting          | Value    | Note                                                                         |
|------------------|----------|------------------------------------------------------------------------------|
| disc_lsb_t1      | 62 .. 55 | Application dependent.                                                       |
| fe_delay         | OFF      | Delay line bypassed.                                                         |
| trigger_mode_2_t | 0b00     | Time stamp taken on rising edge of <i>do_T1</i> .                            |
| trigger_mode_2_q | 0b00     | Integration started on rising edge of <i>do_T1</i> .                         |
| trigger_mode_2_e | 0b000    | Validation and second time stamp taken on falling edge of <i>do_T1</i> .     |
| trigger_mode_2_b | 0b000    | Rearm and end of variable window integration taken on fall of <i>do_T1</i> . |

### 9.2 Single threshold trigger: E

This mode is suitable when the the adequate timing threshold and amplitude discrimination are identical and within the dynamic range of the E branch. In this mode discriminator E is used for all purposes and all events which cross vth\_E are accepted.

Table 40: Single threshold trigger: E

| Setting          | Value | Note                                                                        |
|------------------|-------|-----------------------------------------------------------------------------|
| disc_lsb_e       | 50    | Maximum dynamic range.                                                      |
| fe_delay         | OFF   | Delay line bypassed.                                                        |
| trigger_mode_2_t | 0b11  | Time stamp taken on rising edge of <i>do_E</i> .                            |
| trigger_mode_2_q | 0b10  | Integration started on rising edge of <i>do_E</i> .                         |
| trigger_mode_2_e | 0b010 | Validation and second time stamp taken on falling edge of <i>do_E</i> .     |
| trigger_mode_2_b | 0b010 | Rearm and end of variable window integration taken on fall of <i>do_E</i> . |

### 9.3 Dual threshold trigger: T1, T2

This mode is suitable when the adequate timing threshold and amplitude discrimination are not identical but both are within the dynamic range of the T branch. In this mode discriminator T1 is used to take the first timestamp and start the integration while T2 is used for energy validation and second timestamp. All events which cross vth\_T1 cause the logic to trigger but only those which cross vth\_T2 are digitized and accepted.

Table 41: Dual threshold trigger: T1, T2

| Setting          | Value    | Note                                                                                 |
|------------------|----------|--------------------------------------------------------------------------------------|
| disc_lsb_t1      | 62 .. 55 | Application dependent.                                                               |
| disc_lsb_t2      | 55       | Maximum dynamic range.                                                               |
| fe_delay         | OFF      | Delay line bypassed.                                                                 |
| trigger_mode_2_t | 0b00     | Time stamp taken on rising edge of <i>do_T1</i> .                                    |
| trigger_mode_2_q | 0b00     | Integration started on rising edge of <i>do_T1</i> .                                 |
| trigger_mode_2_e | 0b001    | Validation and second time stamp taken on falling edge of <i>do_T2</i> .             |
| trigger_mode_2_b | 0b011    | Rearm and end of variable window integration taken on fall of <i>do_T1 + do_T2</i> . |

## 9.4 Dual threshold trigger: T1, E

This mode is suitable when the adequate timing threshold and amplitude discrimination are neither identical nor within the dynamic range of the same branch. In this mode discriminator T1 is used to take the first timestamp and start the integration while E is used for energy validation and second timestamp. All events which cross  $vth\_T1$  cause the logic to trigger but only those which cross  $vth\_E$  are digitized and accepted.

Table 42: Dual threshold trigger: T1, E

| Setting          | Value    | Note                                                                             |
|------------------|----------|----------------------------------------------------------------------------------|
| disc_lsb_t1      | 62 .. 55 | Application dependent.                                                           |
| disc_lsb_e       | 50       | Maximum dynamic range.                                                           |
| fe_delay         | OFF      | Delay line bypassed.                                                             |
| trigger_mode_2_t | 0b00     | Time stamp taken on rising edge of $do\_T1$ .                                    |
| trigger_mode_2_q | 0b00     | Integration started on rising edge of $do\_T1$ .                                 |
| trigger_mode_2_e | 0b010    | Validation and second time stamp taken on falling edge of $do\_E$ .              |
| trigger_mode_2_b | 0b100    | Rearm and end of variable window integration taken on fall of $do\_T1 + do\_E$ . |

## 9.5 Dual threshold trigger: T1, T2 with fast dark count rejection

This mode is suitable when the adequate timing threshold and amplitude discrimination are not identical but both are within the dynamic range of the T branch and fast rejection of dark counts is required. In this mode discriminator T1 is used to take the first timestamp while T2 is used to start the integration, energy validation and second timestamp. Events which cross  $vth\_T1$  but not  $vth\_T2$  are rejected without any logic dead time. Events which cross  $vth\_T2$  are digitized and accepted.

Table 43: Dual threshold trigger: T1, T2

| Setting          | Value    | Note                                                                              |
|------------------|----------|-----------------------------------------------------------------------------------|
| disc_lsb_t1      | 62 .. 55 | Application dependent.                                                            |
| disc_lsb_t2      | 55       | Maximum dynamic range.                                                            |
| fe_delay         | 3-8 ns   | Application dependent.                                                            |
| trigger_mode_2_t | 0b01     | Time stamp taken on rising edge of $do\_T1 \cdot do\_T2$ .                        |
| trigger_mode_2_q | 0b01     | Integration started on rising edge of $do\_T2$ .                                  |
| trigger_mode_2_e | 0b001    | Validation and second time stamp taken on falling edge of $do\_T2$ .              |
| trigger_mode_2_b | 0b011    | Rearm and end of variable window integration taken on fall of $do\_T1 + do\_T2$ . |

## 9.6 Triple threshold trigger: T1, T2, E with fast dark count rejection

This mode is suitable when the adequate timing threshold and amplitude discrimination are neither identical nor within the dynamic range of the same branch and fast dark count rejection is required. In this mode discriminator T1 is used to take the first timestamp while T2 is used to start the integration and E is used for energy validation and second timestamp. Events which cross  $vth\_T1$  but not  $vth\_T2$  are rejected without any logic dead time. Events which cross  $vth\_T2$  cause the logic to trigger but only those which cross  $vth\_E$  are digitized and accepted.

Table 44: Dual threshold trigger: T1, T2

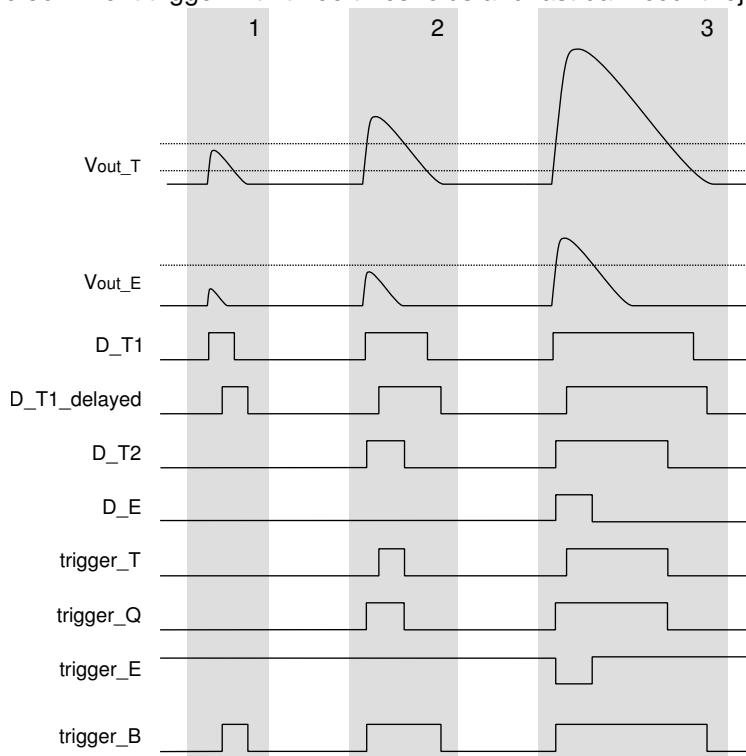

| Setting          | Value    | Note                                                                                      |
|------------------|----------|-------------------------------------------------------------------------------------------|
| disc_lsb_t1      | 62 .. 55 | Application dependent.                                                                    |
| disc_lsb_t2      | 55       | Maximum dynamic range.                                                                    |
| disc_lsb_e       | 50       | Maximum dynamic range.                                                                    |
| fe_delay         | 3-8 ns   | Application dependent.                                                                    |
| trigger_mode_2_t | 0b01     | Time stamp taken on rising edge of $do\_T1 \cdot do\_T2$ .                                |
| trigger_mode_2_q | 0b01     | Integration started on rising edge of $do\_T2$ .                                          |
| trigger_mode_2_e | 0b010    | Validation and second time stamp taken on falling edge of $do\_E$ .                       |
| trigger_mode_2_b | 0b101    | Rearm and end of variable window integration taken on fall of $do\_T1 + do\_T2 + do\_E$ . |

Figure 36 illustrates the operation in the 3 cases.

- Event 1 triggers only D\_T1. It produces no rising edges on trigger\_T, trigger\_E nor trigger\_Q and thus it's totally ignored by the trigger logic.
- Event 2 triggers D\_T1 and D\_D2, yielding rising edges on trigger\_T and trigger\_Q. However since there is no rising edge on trigger\_E, after the falling edge of trigger\_B the logic will discard the event and then REARM for the next event.
- Event 3 triggers all 3 discriminator, yielding rising edges on all 4 trigger signals. After the falling edge of trigger\_B the logic will queue the event for digitization and transmission and then REARM for the next event.

Note that due to DELAY, the time of the rising edge of trigger\_T is actually the time of the rising edge of D\_T1 + DELAY, not the time of the rising edge of D\_T2.

Figure 36: Event trigger with three thresholds and fast dark count rejection.



## 10 Calibration

This section describes the calibration methods currently recommended by PETsys and implemented in the PETsys software.

### 10.1 TIA baseline and discriminators

The purpose of this procedure is to

- Adjust the TIA output baseline such that it is in the range of the threshold voltage DAC.
- Determine which setting of threshold voltage DAC corresponds to the TIA output baseline.
- Estimate the noise in the TIA and discriminator.

It is described for discriminator T1 but the process for discriminator T2 and E is identical.

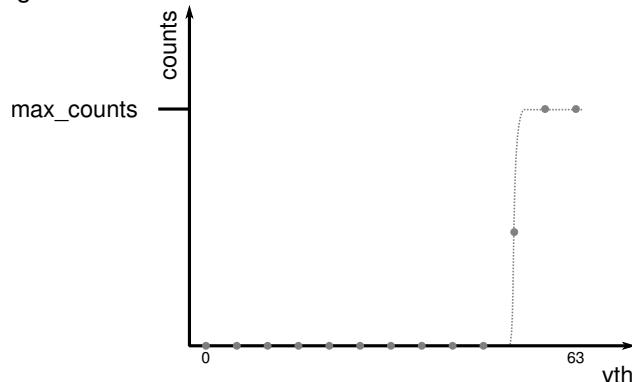
This procedure should be done with the sensors connected, but biased in such a way they produce no signal. Eg, SiPM should be biased below their breakdown voltage.

#### 10.1.1 Baseline adjustment

1. Set *count\_mode* to 0xF.
2. Set *count\_en* to 0b1 and set *counter\_period*.
3. Set *trigger\_2\_b* to select the desired discriminator.
4. Set threshold voltage *vth\_T1* to 62.
5. Set *baseline\_T* to 62.
6. Increase *baseline\_T* until the baseline is above the threshold voltage.
  - (a) Read the counter.
  - (b) If the counter is less than 99.9% of maximum, then increase *baseline\_T* by one and repeat.
7. Use this value of *baseline\_T* in all further data acquisitions.

#### 10.1.2 Threshold calibration

1. Set *count\_mode* to 0xF.
2. Set *count\_en* to 0b1 and set *counter\_period*.
3. Set *trigger\_2\_b* to select the desired discriminator.
4. Iterate setting threshold voltage *vth\_T1* in 63 to 0.
  - (a) Read the counter.
  - (b) Store the counter value.


The collected data is a S-curve (figure 37). Fitting the cumulating distribution function to the data,  $\mu$  gives the position of the baseline in terms of the threshold voltage, while  $\sigma$  provides an estimate of noise.

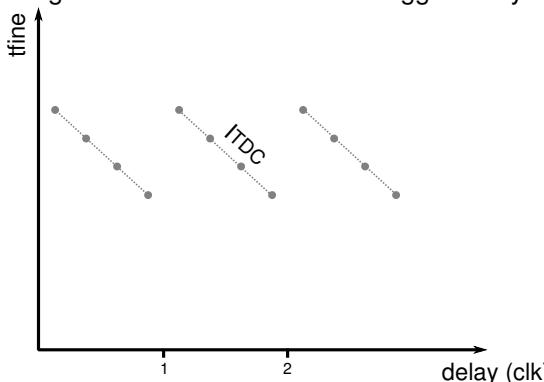
#### 10.1.3 Dark counts

The internal counter can also be used to measure the dark count rate of the SiPM in function of threshold. The same method is used as in 10.1.2 but

- SiPM should be biased at the desired operation voltage.
- *count\_mode* should be set to 0xC.

Figure 37: Discriminator counts as function of threshold.




## 10.2 TDC calibration

The purpose of this procedure is to characterize the response of the TDC as function of the trigger signal phase relative to the clock, in order to obtain a correction curve. This method uses an external TEST\_PULSE signal, synchronous to the clock but adjustable phase/delay in order to scan the phase of the trigger signal.

1. Set measurement mode to ToT (see 5.5).
2. Set *trigger\_mode\_1* to 0b01.
3. For a range of delays (eg, 0 to 40 ns in 100 ps increments):
  - (a) Transmit to the TEST\_PULSE input pulses with a synchronous relationship to *CLK* but with the chosen delay.
  - (b) Collect data.

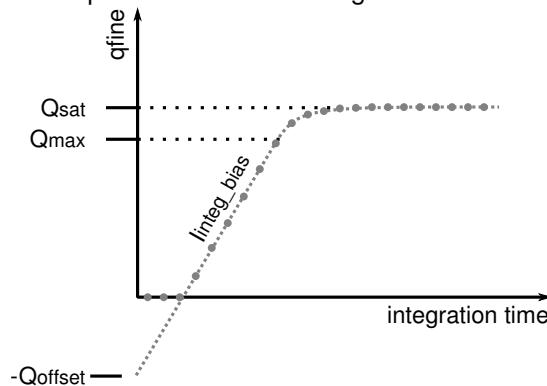
The collected data (figure 38) can be fitted to a function (eg, a 2<sup>nd</sup> order polynomial) in order to extract the correction curve.

Figure 38: tfine as function of trigger delay.



## 10.3 QDC calibration

The purpose of this procedure is to characterize the response of the QDC response as function of the integration time and integrated charge. This method uses an external TEST\_PULSE signal, synchronous to the clock but adjustable phase/delay and length to scan the integration window duration.


This procedure should be done with the sensors connected, but biased in such a way they produce no signal. Eg, SiPM should be biased below their breakdown voltage.

1. Set measurement mode to QDC (see 5.5).
2. Set *trigger\_mode\_1* to 0b01.
3. Set *min\_intg\_time* to 0 and *max\_intg\_time* to 127.

4. For a range of lengths (eg, 0 to 500 ns) and delays (0 to 5.0 ns in 250 ps increments):
  - (a) Transmit to the TEST\_PULSE input test pulses with a synchronous relationship to *CLK* but with the chosen length and delay.
  - (b) Collect data.

The collected data (figure 38) can be fitted to a function in order to extract the correction curve.

Figure 39:  $q_{fine}$  as function of integration window length.



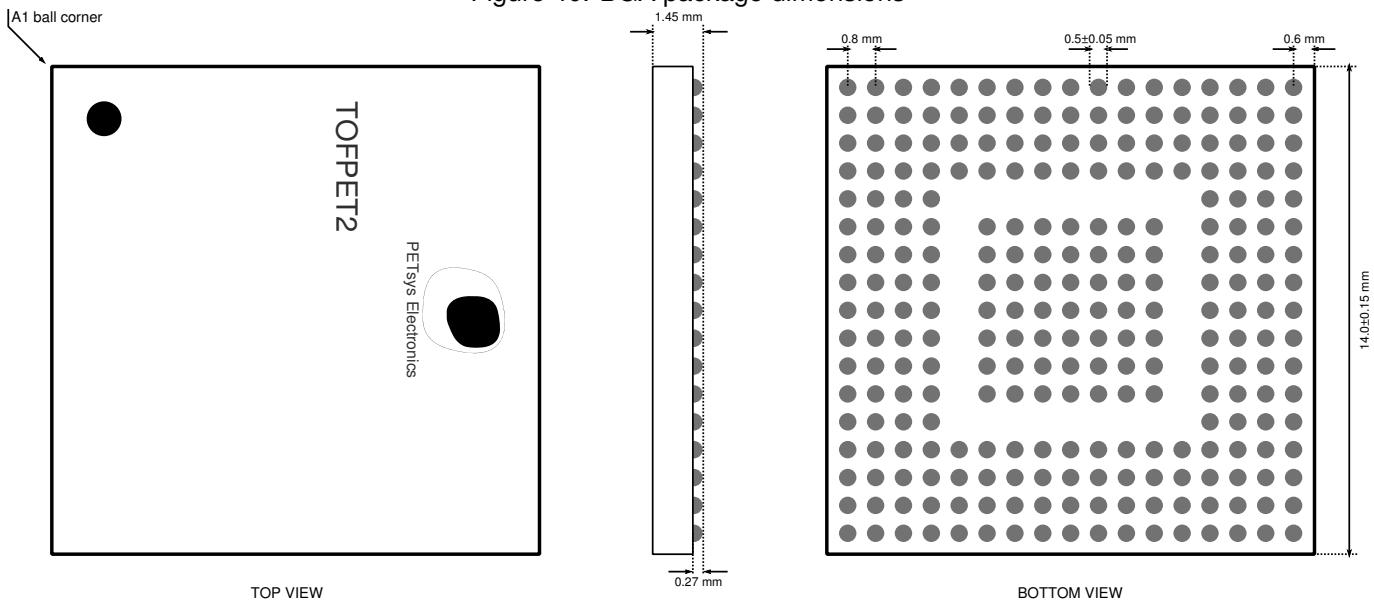
## 11 Package and pin description

### 11.1 Pin description

| Pin | Pin name | Pin type  | Description |
|-----|----------|-----------|-------------|
| K1  | CH_00    | Analog IN | Channel 00  |
| K2  | CH_01    | Analog IN | Channel 01  |
| J1  | CH_02    | Analog IN | Channel 02  |
| J2  | CH_03    | Analog IN | Channel 03  |
| H1  | CH_04    | Analog IN | Channel 04  |
| H2  | CH_05    | Analog IN | Channel 05  |
| G1  | CH_06    | Analog IN | Channel 06  |
| G2  | CH_07    | Analog IN | Channel 07  |
| F1  | CH_08    | Analog IN | Channel 08  |
| F2  | CH_09    | Analog IN | Channel 09  |
| E1  | CH_10    | Analog IN | Channel 10  |
| E2  | CH_11    | Analog IN | Channel 11  |
| D1  | CH_12    | Analog IN | Channel 12  |
| D2  | CH_13    | Analog IN | Channel 13  |
| C1  | CH_14    | Analog IN | Channel 14  |
| C2  | CH_15    | Analog IN | Channel 15  |
| B1  | CH_16    | Analog IN | Channel 16  |
| B2  | CH_17    | Analog IN | Channel 17  |
| A1  | CH_18    | Analog IN | Channel 18  |
| A2  | CH_19    | Analog IN | Channel 19  |
| A3  | CH_20    | Analog IN | Channel 20  |
| B3  | CH_21    | Analog IN | Channel 21  |
| A4  | CH_22    | Analog IN | Channel 22  |
| B4  | CH_23    | Analog IN | Channel 23  |
| A5  | CH_24    | Analog IN | Channel 24  |
| B5  | CH_25    | Analog IN | Channel 25  |
| B6  | CH_26    | Analog IN | Channel 26  |
| A7  | CH_27    | Analog IN | Channel 27  |
| B7  | CH_28    | Analog IN | Channel 28  |
| A8  | CH_29    | Analog IN | Channel 29  |
| B8  | CH_30    | Analog IN | Channel 30  |
| A9  | CH_31    | Analog IN | Channel 31  |
| B9  | CH_32    | Analog IN | Channel 32  |
| A10 | CH_33    | Analog IN | Channel 33  |
| B10 | CH_34    | Analog IN | Channel 34  |
| A11 | CH_35    | Analog IN | Channel 35  |
| B11 | CH_36    | Analog IN | Channel 36  |
| B12 | CH_37    | Analog IN | Channel 37  |
| A13 | CH_38    | Analog IN | Channel 38  |
| B13 | CH_39    | Analog IN | Channel 39  |
| A14 | CH_40    | Analog IN | Channel 40  |
| B14 | CH_41    | Analog IN | Channel 41  |
| A15 | CH_42    | Analog IN | Channel 42  |
| B15 | CH_43    | Analog IN | Channel 43  |
| A16 | CH_44    | Analog IN | Channel 44  |
| A17 | CH_45    | Analog IN | Channel 45  |
| B16 | CH_46    | Analog IN | Channel 46  |
| B17 | CH_47    | Analog IN | Channel 47  |
| C16 | CH_48    | Analog IN | Channel 48  |
| C17 | CH_49    | Analog IN | Channel 49  |
| D16 | CH_50    | Analog IN | Channel 50  |
| D17 | CH_51    | Analog IN | Channel 51  |
| E16 | CH_52    | Analog IN | Channel 52  |
| E17 | CH_53    | Analog IN | Channel 53  |
| F16 | CH_54    | Analog IN | Channel 54  |

|     |                |            |                   |
|-----|----------------|------------|-------------------|
| F17 | CH_55          | Analog IN  | Channel 55        |
| G16 | CH_56          | Analog IN  | Channel 56        |
| G17 | CH_57          | Analog IN  | Channel 57        |
| H16 | CH_58          | Analog IN  | Channel 58        |
| H17 | CH_59          | Analog IN  | Channel 59        |
| J16 | CH_60          | Analog IN  | Channel 60        |
| J17 | CH_61          | Analog IN  | Channel 61        |
| K16 | CH_62          | Analog IN  | Channel 62        |
| K17 | CH_63          | Analog IN  | Channel 63        |
| N17 | CH_63_VOUT_TH1 | Analog OUT | Channel 63 Vth_T1 |
| M17 | CH_63_VOUT_T   | Analog OUT | Channel 63 Vout_T |
| A6  | AGND           | GND        | Analog ground     |
| A12 | AGND           | GND        | Analog ground     |
| C3  | AGND           | GND        | Analog ground     |
| C4  | AGND           | GND        | Analog ground     |
| C6  | AGND           | GND        | Analog ground     |
| C8  | AGND           | GND        | Analog ground     |
| C9  | AGND           | GND        | Analog ground     |
| C10 | AGND           | GND        | Analog ground     |
| C12 | AGND           | GND        | Analog ground     |
| C14 | AGND           | GND        | Analog ground     |
| C15 | AGND           | GND        | Analog ground     |
| E4  | AGND           | GND        | Analog ground     |
| E14 | AGND           | GND        | Analog ground     |
| F6  | AGND           | GND        | Analog ground     |
| F7  | AGND           | GND        | Analog ground     |
| F8  | AGND           | GND        | Analog ground     |
| F9  | AGND           | GND        | Analog ground     |
| F10 | AGND           | GND        | Analog ground     |
| F11 | AGND           | GND        | Analog ground     |
| F12 | AGND           | GND        | Analog ground     |
| G6  | AGND           | GND        | Analog ground     |
| G7  | AGND           | GND        | Analog ground     |
| G8  | AGND           | GND        | Analog ground     |
| G9  | AGND           | GND        | Analog ground     |
| G10 | AGND           | GND        | Analog ground     |
| G11 | AGND           | GND        | Analog ground     |
| G12 | AGND           | GND        | Analog ground     |
| H3  | AGND           | GND        | Analog ground     |
| H6  | AGND           | GND        | Analog ground     |
| H7  | AGND           | GND        | Analog ground     |
| H8  | AGND           | GND        | Analog ground     |
| H9  | AGND           | GND        | Analog ground     |
| H10 | AGND           | GND        | Analog ground     |
| H11 | AGND           | GND        | Analog ground     |
| H12 | AGND           | GND        | Analog ground     |
| H15 | AGND           | GND        | Analog ground     |
| J6  | AGND           | GND        | Analog ground     |
| J7  | AGND           | GND        | Analog ground     |
| J8  | AGND           | GND        | Analog ground     |
| J9  | AGND           | GND        | Analog ground     |
| J10 | AGND           | GND        | Analog ground     |
| J11 | AGND           | GND        | Analog ground     |
| J12 | AGND           | GND        | Analog ground     |
| K6  | AGND           | GND        | Analog ground     |
| K7  | AGND           | GND        | Analog ground     |
| K8  | AGND           | GND        | Analog ground     |
| K9  | AGND           | GND        | Analog ground     |
| K10 | AGND           | GND        | Analog ground     |
| K11 | AGND           | GND        | Analog ground     |

|     |          |     |                |
|-----|----------|-----|----------------|
| K12 | AGND     | GND | Analog ground  |
| L1  | AGND     | GND | Analog ground  |
| L2  | AGND     | GND | Analog ground  |
| L4  | AGND     | GND | Analog ground  |
| L14 | AGND     | GND | Analog ground  |
| L16 | AGND     | GND | Analog ground  |
| L17 | AGND     | GND | Analog ground  |
| L3  | AI0GND_B | GND | Analog ground  |
| L15 | AI0GND_T | GND | Analog ground  |
| L6  | DGND     | GND | Digital ground |
| L7  | DGND     | GND | Digital ground |
| L8  | DGND     | GND | Digital ground |
| L9  | DGND     | GND | Digital ground |
| L10 | DGND     | GND | Digital ground |
| L11 | DGND     | GND | Digital ground |
| L12 | DGND     | GND | Digital ground |
| M2  | DGND     | GND | Digital ground |
| M3  | DGND     | GND | Digital ground |
| M6  | DGND     | GND | Digital ground |
| M7  | DGND     | GND | Digital ground |
| M8  | DGND     | GND | Digital ground |
| M9  | DGND     | GND | Digital ground |
| M10 | DGND     | GND | Digital ground |
| M11 | DGND     | GND | Digital ground |
| M12 | DGND     | GND | Digital ground |
| M15 | DGND     | GND | Digital ground |
| M16 | DGND     | GND | Digital ground |
| P1  | DGND     | GND | Digital ground |
| P17 | DGND     | GND | Digital ground |
| R1  | DGND     | GND | Digital ground |
| R2  | DGND     | GND | Digital ground |
| R3  | DGND     | GND | Digital ground |
| R4  | DGND     | GND | Digital ground |
| R5  | DGND     | GND | Digital ground |
| R6  | DGND     | GND | Digital ground |
| R7  | DGND     | GND | Digital ground |
| R8  | DGND     | GND | Digital ground |
| R9  | DGND     | GND | Digital ground |
| R10 | DGND     | GND | Digital ground |
| R11 | DGND     | GND | Digital ground |
| R12 | DGND     | GND | Digital ground |
| R13 | DGND     | GND | Digital ground |
| R14 | DGND     | GND | Digital ground |
| R15 | DGND     | GND | Digital ground |
| R16 | DGND     | GND | Digital ground |
| R17 | DGND     | GND | Digital ground |
| T1  | DGND     | GND | Digital ground |
| T6  | DGND     | GND | Digital ground |
| T7  | DGND     | GND | Digital ground |
| T11 | DGND     | GND | Digital ground |
| T12 | DGND     | GND | Digital ground |
| T17 | DGND     | GND | Digital ground |
| U1  | DGND     | GND | Digital ground |
| U6  | DGND     | GND | Digital ground |
| U7  | DGND     | GND | Digital ground |
| U11 | DGND     | GND | Digital ground |
| U12 | DGND     | GND | Digital ground |
| U17 | DGND     | GND | Digital ground |
| N2  | IOGND_B  | GND | Digital ground |
| N16 | IOGND_T  | GND | Digital ground |


|     |              |          |               |
|-----|--------------|----------|---------------|
| U9  | CLK_N        | LVDS IN  | CLK           |
| T9  | CLK_P        | LVDS IN  | CLK           |
| U13 | MOSI_N       | LVDS IN  | MOSI          |
| T13 | MOSI_P       | LVDS IN  | MOSI          |
| U15 | SCLK_N       | LVDS IN  | SCLK          |
| T15 | SCLK_P       | LVDS IN  | SCLK          |
| U10 | SS_N         | LVDS IN  | SS            |
| T10 | SS_P         | LVDS IN  | SS            |
| U8  | SYNC_RST_N   | LVDS IN  | SYNC_RST      |
| T8  | SYNC_RST_P   | LVDS IN  | SYNC_RST      |
| U16 | TEST_PULSE_N | LVDS IN  | TEST_PULSE    |
| T16 | TEST_PULSE_P | LVDS IN  | TEST_PULSE    |
| U14 | MISO_N       | LVDS OUT | MISO          |
| T14 | MISO_P       | LVDS OUT | MISO          |
| U5  | TX0_N        | LVDS OUT | TX[0]         |
| T5  | TX0_P        | LVDS OUT | TX[0]         |
| U4  | TX1_N        | LVDS OUT | TX[1]         |
| T4  | TX1_P        | LVDS OUT | TX[1]         |
| U3  | TX2_N        | LVDS OUT | TX[2]         |
| T3  | TX2_P        | LVDS OUT | TX[2]         |
| U2  | TX3_N        | LVDS OUT | TX[3]         |
| T2  | TX3_P        | LVDS OUT | TX[3]         |
| C5  | N/C          | N/C      | Not connected |
| C7  | N/C          | N/C      | Not connected |
| C11 | N/C          | N/C      | Not connected |
| C13 | N/C          | N/C      | Not connected |
| D3  | N/C          | N/C      | Not connected |
| D4  | N/C          | N/C      | Not connected |
| D9  | N/C          | N/C      | Not connected |
| D14 | N/C          | N/C      | Not connected |
| D15 | N/C          | N/C      | Not connected |
| F3  | N/C          | N/C      | Not connected |
| G3  | N/C          | N/C      | Not connected |
| G15 | N/C          | N/C      | Not connected |
| K3  | N/C          | N/C      | Not connected |
| K15 | N/C          | N/C      | Not connected |
| M1  | N/C          | N/C      | Not connected |
| N1  | N/C          | N/C      | Not connected |
| N3  | N/C          | N/C      | Not connected |
| N15 | N/C          | N/C      | Not connected |
| P2  | N/C          | N/C      | Not connected |
| P16 | N/C          | N/C      | Not connected |
| J3  | AIOVDD_B     | VDD12    | Analog supply |
| J15 | AIOVDD_T     | VDD12    | Analog supply |
| D5  | AVDD         | VDD12    | Analog supply |
| D6  | AVDD         | VDD12    | Analog supply |
| D7  | AVDD         | VDD12    | Analog supply |
| D8  | AVDD         | VDD12    | Analog supply |
| D10 | AVDD         | VDD12    | Analog supply |
| D11 | AVDD         | VDD12    | Analog supply |
| D12 | AVDD         | VDD12    | Analog supply |
| D13 | AVDD         | VDD12    | Analog supply |
| F14 | AVDD         | VDD12    | Analog supply |
| G4  | AVDD         | VDD12    | Analog supply |
| G14 | AVDD         | VDD12    | Analog supply |
| H4  | AVDD         | VDD12    | Analog supply |
| J4  | AVDD         | VDD12    | Analog supply |
| J14 | AVDD         | VDD12    | Analog supply |
| K4  | AVDD         | VDD12    | Analog supply |
| K14 | AVDD         | VDD12    | Analog supply |

|     |         |       |                   |
|-----|---------|-------|-------------------|
| F4  | AVDD    | VDD12 | Analog ground     |
| H14 | AVDD    | VDD12 | Analog ground     |
| M14 | DVDD    | VDD12 | Digital supply    |
| P3  | DVDD    | VDD12 | Digital supply    |
| P4  | DVDD    | VDD12 | Digital supply    |
| P5  | DVDD    | VDD12 | Digital supply    |
| P6  | DVDD    | VDD12 | Digital supply    |
| P7  | DVDD    | VDD12 | Digital supply    |
| P8  | DVDD    | VDD12 | Digital supply    |
| P9  | DVDD    | VDD12 | Digital supply    |
| P10 | DVDD    | VDD12 | Digital supply    |
| P11 | DVDD    | VDD12 | Digital supply    |
| P12 | DVDD    | VDD12 | Digital supply    |
| P13 | DVDD    | VDD12 | Digital supply    |
| P14 | DVDD    | VDD12 | Digital supply    |
| P15 | DVDD    | VDD12 | Digital supply    |
| M4  | DVDD    | VDD12 | Digital supply    |
| N4  | IOVDD_B | VDD25 | Digital supply    |
| N14 | IOVDD_T | VDD25 | Digital supply    |
| F15 | VG_T    | VG    | Reference voltage |
| E3  | VREF_B  | VREF  | Reference voltage |
| E15 | VREF_T  | VREF  | Reference voltage |

Table 45: Pin functional description

## 11.2 Package outline

Figure 40: BGA package dimensions



### 11.3 Recommended footprint

Figure 41: BGA footprint

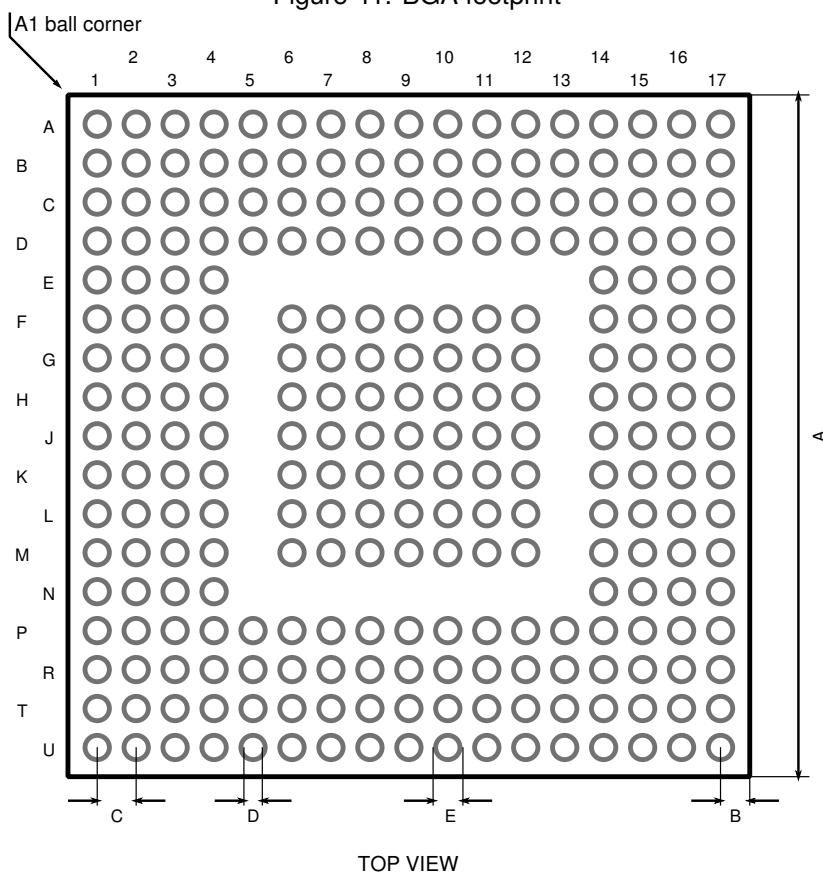



Table 46: BGA foot print recommended sizes

| Description                             | Value       |
|-----------------------------------------|-------------|
| A Footprint edge length                 | 14 mm       |
| B Pad centre to edge distance           | 0.6 mm      |
| C Pad centre to centre distance (pitch) | 0.8 mm      |
| D Pad diameter                          | 450 $\mu$ m |
| E Solder mask opening diameter          | 600 $\mu$ m |

PETsys recommends the use of Non-Solder Mask Defined pads, with dimensions as per figure 41 and table 46.

## A CRC-8 example

A possible VHDL implementation would be:

```
1 function crc8(crc_in : std_logic_vector(7 downto 0); data : std_logic)
2     return std_logic_vector is
3 variable crc_out : std_logic_vector(7 downto 0);
4 begin
5     crc_out(0) := data xor crc_in(7);
6     crc_out(1) := data xor crc_in(0) xor crc_in(7);
7     crc_out(2) := data xor crc_in(1) xor crc_in(7);
8     crc_out(3) := crc_in(2);
9     crc_out(4) := crc_in(3);
10    crc_out(5) := crc_in(4);
11    crc_out(6) := crc_in(5);
12    crc_out(7) := crc_in(6);
13    return crc_out;
14 end crc8;
```

The initial value of `crc_in` is 0x80. The expect output for a global register read command (1001) is 10100111 and the complete command to be sent to the ASIC is 100110100111.